b6285dad7bf3fd78ca979136945ddeeb4fdf4257
[strongswan.git] / src / libstrongswan / plugins / gmp / gmp_rsa_private_key.c
1 /*
2 * Copyright (C) 2005-2008 Martin Willi
3 * Copyright (C) 2005 Jan Hutter
4 * Hochschule fuer Technik Rapperswil
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * for more details.
15 *
16 * $Id$
17 */
18
19 #include <gmp.h>
20 #include <sys/stat.h>
21 #include <unistd.h>
22 #include <string.h>
23
24 #include "gmp_rsa_private_key.h"
25 #include "gmp_rsa_public_key.h"
26
27 #include <debug.h>
28 #include <asn1/oid.h>
29 #include <asn1/asn1.h>
30 #include <asn1/asn1_parser.h>
31
32 /**
33 * Public exponent to use for key generation.
34 */
35 #define PUBLIC_EXPONENT 0x10001
36
37 typedef struct private_gmp_rsa_private_key_t private_gmp_rsa_private_key_t;
38
39 /**
40 * Private data of a gmp_rsa_private_key_t object.
41 */
42 struct private_gmp_rsa_private_key_t {
43 /**
44 * Public interface for this signer.
45 */
46 gmp_rsa_private_key_t public;
47
48 /**
49 * Version of key, as encoded in PKCS#1
50 */
51 u_int version;
52
53 /**
54 * Public modulus.
55 */
56 mpz_t n;
57
58 /**
59 * Public exponent.
60 */
61 mpz_t e;
62
63 /**
64 * Private prime 1.
65 */
66 mpz_t p;
67
68 /**
69 * Private Prime 2.
70 */
71 mpz_t q;
72
73 /**
74 * Private exponent.
75 */
76 mpz_t d;
77
78 /**
79 * Private exponent 1.
80 */
81 mpz_t exp1;
82
83 /**
84 * Private exponent 2.
85 */
86 mpz_t exp2;
87
88 /**
89 * Private coefficient.
90 */
91 mpz_t coeff;
92
93 /**
94 * Keysize in bytes.
95 */
96 size_t k;
97
98 /**
99 * Keyid formed as a SHA-1 hash of a publicKey object
100 */
101 identification_t* keyid;
102
103 /**
104 * Keyid formed as a SHA-1 hash of a publicKeyInfo object
105 */
106 identification_t* keyid_info;
107
108 /**
109 * reference count
110 */
111 refcount_t ref;
112 };
113
114 /**
115 * shared functions, implemented in gmp_rsa_public_key.c
116 */
117 bool gmp_rsa_public_key_build_id(mpz_t n, mpz_t e, identification_t **keyid,
118 identification_t **keyid_info);
119 gmp_rsa_public_key_t *gmp_rsa_public_key_create_from_n_e(mpz_t n, mpz_t e);
120
121 /**
122 * Auxiliary function overwriting private key material with zero bytes
123 */
124 static void mpz_clear_randomized(mpz_t z)
125 {
126 size_t len = mpz_size(z) * GMP_LIMB_BITS / BITS_PER_BYTE;
127 u_int8_t *random = alloca(len);
128
129 memset(random, 0, len);
130 /* overwrite mpz_t with zero bytes before clearing it */
131 mpz_import(z, len, 1, 1, 1, 0, random);
132 mpz_clear(z);
133 }
134
135 /**
136 * Create a mpz prime of at least prime_size
137 */
138 static status_t compute_prime(private_gmp_rsa_private_key_t *this,
139 size_t prime_size, mpz_t *prime)
140 {
141 rng_t *rng;
142 chunk_t random_bytes;
143
144 rng = lib->crypto->create_rng(lib->crypto, RNG_REAL);
145 if (!rng)
146 {
147 DBG1("no RNG of quality %N found", rng_quality_names, RNG_REAL);
148 return FAILED;
149 }
150
151 mpz_init(*prime);
152 do
153 {
154 rng->allocate_bytes(rng, prime_size, &random_bytes);
155 /* make sure most significant bit is set */
156 random_bytes.ptr[0] = random_bytes.ptr[0] | 0x80;
157
158 mpz_import(*prime, random_bytes.len, 1, 1, 1, 0, random_bytes.ptr);
159 mpz_nextprime (*prime, *prime);
160 chunk_clear(&random_bytes);
161 }
162 /* check if it isn't too large */
163 while (((mpz_sizeinbase(*prime, 2) + 7) / 8) > prime_size);
164
165 rng->destroy(rng);
166 return SUCCESS;
167 }
168
169 /**
170 * PKCS#1 RSADP function
171 */
172 static chunk_t rsadp(private_gmp_rsa_private_key_t *this, chunk_t data)
173 {
174 mpz_t t1, t2;
175 chunk_t decrypted;
176
177 mpz_init(t1);
178 mpz_init(t2);
179
180 mpz_import(t1, data.len, 1, 1, 1, 0, data.ptr);
181
182 mpz_powm(t2, t1, this->exp1, this->p); /* m1 = c^dP mod p */
183 mpz_powm(t1, t1, this->exp2, this->q); /* m2 = c^dQ mod Q */
184 mpz_sub(t2, t2, t1); /* h = qInv (m1 - m2) mod p */
185 mpz_mod(t2, t2, this->p);
186 mpz_mul(t2, t2, this->coeff);
187 mpz_mod(t2, t2, this->p);
188
189 mpz_mul(t2, t2, this->q); /* m = m2 + h q */
190 mpz_add(t1, t1, t2);
191
192 decrypted.len = this->k;
193 decrypted.ptr = mpz_export(NULL, NULL, 1, decrypted.len, 1, 0, t1);
194
195 mpz_clear_randomized(t1);
196 mpz_clear_randomized(t2);
197
198 return decrypted;
199 }
200
201 /**
202 * PKCS#1 RSASP1 function
203 */
204 static chunk_t rsasp1(private_gmp_rsa_private_key_t *this, chunk_t data)
205 {
206 return rsadp(this, data);
207 }
208
209 /**
210 * Implementation of gmp_rsa_private_key_t.build_emsa_pkcs1_signature.
211 */
212 static bool build_emsa_pkcs1_signature(private_gmp_rsa_private_key_t *this,
213 hash_algorithm_t hash_algorithm,
214 chunk_t data, chunk_t *signature)
215 {
216 hasher_t *hasher;
217 chunk_t em, digestInfo, hash;
218 int hash_oid = hasher_algorithm_to_oid(hash_algorithm);
219
220 if (hash_oid == OID_UNKNOWN)
221 {
222 return FALSE;
223 }
224
225 /* get hasher */
226 hasher = lib->crypto->create_hasher(lib->crypto, hash_algorithm);
227 if (hasher == NULL)
228 {
229 return FALSE;
230 }
231
232 /* build hash */
233 hasher->allocate_hash(hasher, data, &hash);
234 hasher->destroy(hasher);
235
236 /* build DER-encoded digestInfo */
237 digestInfo = asn1_wrap(ASN1_SEQUENCE, "cm",
238 asn1_algorithmIdentifier(hash_oid),
239 asn1_simple_object(ASN1_OCTET_STRING, hash)
240 );
241 chunk_free(&hash);
242
243 /* build chunk to rsa-decrypt:
244 * EM = 0x00 || 0x01 || PS || 0x00 || T.
245 * PS = 0xFF padding, with length to fill em
246 * T = encoded_hash
247 */
248 em.len = this->k;
249 em.ptr = malloc(em.len);
250
251 /* fill em with padding */
252 memset(em.ptr, 0xFF, em.len);
253 /* set magic bytes */
254 *(em.ptr) = 0x00;
255 *(em.ptr+1) = 0x01;
256 *(em.ptr + em.len - digestInfo.len - 1) = 0x00;
257 /* set DER-encoded hash */
258 memcpy(em.ptr + em.len - digestInfo.len, digestInfo.ptr, digestInfo.len);
259
260 /* build signature */
261 *signature = rsasp1(this, em);
262
263 free(digestInfo.ptr);
264 free(em.ptr);
265
266 return TRUE;
267 }
268
269 /**
270 * Implementation of gmp_rsa_private_key.destroy.
271 */
272 static key_type_t get_type(private_gmp_rsa_private_key_t *this)
273 {
274 return KEY_RSA;
275 }
276
277 /**
278 * Implementation of gmp_rsa_private_key.destroy.
279 */
280 static bool sign(private_gmp_rsa_private_key_t *this, signature_scheme_t scheme,
281 chunk_t data, chunk_t *signature)
282 {
283 switch (scheme)
284 {
285 case SIGN_DEFAULT:
286 /* default is EMSA-PKCS1 using SHA1 */
287 case SIGN_RSA_EMSA_PKCS1_SHA1:
288 return build_emsa_pkcs1_signature(this, HASH_SHA1, data, signature);
289 case SIGN_RSA_EMSA_PKCS1_SHA256:
290 return build_emsa_pkcs1_signature(this, HASH_SHA256, data, signature);
291 case SIGN_RSA_EMSA_PKCS1_SHA384:
292 return build_emsa_pkcs1_signature(this, HASH_SHA384, data, signature);
293 case SIGN_RSA_EMSA_PKCS1_SHA512:
294 return build_emsa_pkcs1_signature(this, HASH_SHA512, data, signature);
295 case SIGN_RSA_EMSA_PKCS1_MD5:
296 return build_emsa_pkcs1_signature(this, HASH_MD5, data, signature);
297 default:
298 DBG1("signature scheme %N not supported in RSA",
299 signature_scheme_names, scheme);
300 return FALSE;
301 }
302 }
303
304 /**
305 * Implementation of gmp_rsa_private_key.destroy.
306 */
307 static bool decrypt(private_gmp_rsa_private_key_t *this,
308 chunk_t crypto, chunk_t *plain)
309 {
310 DBG1("RSA private key decryption not implemented");
311 return FALSE;
312 }
313
314 /**
315 * Implementation of gmp_rsa_private_key.destroy.
316 */
317 static size_t get_keysize(private_gmp_rsa_private_key_t *this)
318 {
319 return this->k;
320 }
321
322 /**
323 * Implementation of gmp_rsa_private_key.destroy.
324 */
325 static identification_t* get_id(private_gmp_rsa_private_key_t *this,
326 id_type_t type)
327 {
328 switch (type)
329 {
330 case ID_PUBKEY_INFO_SHA1:
331 return this->keyid_info;
332 case ID_PUBKEY_SHA1:
333 return this->keyid;
334 default:
335 return NULL;
336 }
337 }
338
339 /**
340 * Implementation of gmp_rsa_private_key.destroy.
341 */
342 static gmp_rsa_public_key_t* get_public_key(private_gmp_rsa_private_key_t *this)
343 {
344 return gmp_rsa_public_key_create_from_n_e(this->n, this->e);
345 }
346
347 /**
348 * Implementation of gmp_rsa_private_key.destroy.
349 */
350 static bool belongs_to(private_gmp_rsa_private_key_t *this, public_key_t *public)
351 {
352 identification_t *keyid;
353
354 if (public->get_type(public) != KEY_RSA)
355 {
356 return FALSE;
357 }
358 keyid = public->get_id(public, ID_PUBKEY_SHA1);
359 if (keyid && keyid->equals(keyid, this->keyid))
360 {
361 return TRUE;
362 }
363 keyid = public->get_id(public, ID_PUBKEY_INFO_SHA1);
364 if (keyid && keyid->equals(keyid, this->keyid_info))
365 {
366 return TRUE;
367 }
368 return FALSE;
369 }
370
371 /**
372 * convert a MP integer into a DER coded ASN.1 object
373 */
374 chunk_t gmp_mpz_to_asn1(const mpz_t value)
375 {
376 size_t bits = mpz_sizeinbase(value, 2); /* size in bits */
377 chunk_t n;
378
379 n.len = 1 + bits / 8; /* size in bytes */
380 n.ptr = mpz_export(NULL, NULL, 1, n.len, 1, 0, value);
381
382 return asn1_wrap(ASN1_INTEGER, "m", n);
383 }
384
385 /**
386 * Implementation of private_key_t.get_encoding.
387 */
388 static chunk_t get_encoding(private_gmp_rsa_private_key_t *this)
389 {
390 return asn1_wrap(ASN1_SEQUENCE, "cmmmmmmmm",
391 ASN1_INTEGER_0,
392 gmp_mpz_to_asn1(this->n),
393 gmp_mpz_to_asn1(this->e),
394 gmp_mpz_to_asn1(this->d),
395 gmp_mpz_to_asn1(this->p),
396 gmp_mpz_to_asn1(this->q),
397 gmp_mpz_to_asn1(this->exp1),
398 gmp_mpz_to_asn1(this->exp2),
399 gmp_mpz_to_asn1(this->coeff));
400 }
401
402 /**
403 * Implementation of gmp_rsa_private_key.destroy.
404 */
405 static private_gmp_rsa_private_key_t* get_ref(private_gmp_rsa_private_key_t *this)
406 {
407 ref_get(&this->ref);
408 return this;
409
410 }
411
412 /**
413 * Implementation of gmp_rsa_private_key.destroy.
414 */
415 static void destroy(private_gmp_rsa_private_key_t *this)
416 {
417 if (ref_put(&this->ref))
418 {
419 mpz_clear_randomized(this->n);
420 mpz_clear_randomized(this->e);
421 mpz_clear_randomized(this->p);
422 mpz_clear_randomized(this->q);
423 mpz_clear_randomized(this->d);
424 mpz_clear_randomized(this->exp1);
425 mpz_clear_randomized(this->exp2);
426 mpz_clear_randomized(this->coeff);
427 DESTROY_IF(this->keyid);
428 DESTROY_IF(this->keyid_info);
429 free(this);
430 }
431 }
432
433 /**
434 * Check the loaded key if it is valid and usable
435 */
436 static status_t check(private_gmp_rsa_private_key_t *this)
437 {
438 mpz_t t, u, q1;
439 status_t status = SUCCESS;
440
441 /* PKCS#1 1.5 section 6 requires modulus to have at least 12 octets.
442 * We actually require more (for security).
443 */
444 if (this->k < 512/8)
445 {
446 DBG1("key shorter than 512 bits");
447 return FAILED;
448 }
449
450 /* we picked a max modulus size to simplify buffer allocation */
451 if (this->k > 8192/8)
452 {
453 DBG1("key larger thant 8192 bits");
454 return FAILED;
455 }
456
457 mpz_init(t);
458 mpz_init(u);
459 mpz_init(q1);
460
461 /* check that n == p * q */
462 mpz_mul(u, this->p, this->q);
463 if (mpz_cmp(u, this->n) != 0)
464 {
465 status = FAILED;
466 }
467
468 /* check that e divides neither p-1 nor q-1 */
469 mpz_sub_ui(t, this->p, 1);
470 mpz_mod(t, t, this->e);
471 if (mpz_cmp_ui(t, 0) == 0)
472 {
473 status = FAILED;
474 }
475
476 mpz_sub_ui(t, this->q, 1);
477 mpz_mod(t, t, this->e);
478 if (mpz_cmp_ui(t, 0) == 0)
479 {
480 status = FAILED;
481 }
482
483 /* check that d is e^-1 (mod lcm(p-1, q-1)) */
484 /* see PKCS#1v2, aka RFC 2437, for the "lcm" */
485 mpz_sub_ui(q1, this->q, 1);
486 mpz_sub_ui(u, this->p, 1);
487 mpz_gcd(t, u, q1); /* t := gcd(p-1, q-1) */
488 mpz_mul(u, u, q1); /* u := (p-1) * (q-1) */
489 mpz_divexact(u, u, t); /* u := lcm(p-1, q-1) */
490
491 mpz_mul(t, this->d, this->e);
492 mpz_mod(t, t, u);
493 if (mpz_cmp_ui(t, 1) != 0)
494 {
495 status = FAILED;
496 }
497
498 /* check that exp1 is d mod (p-1) */
499 mpz_sub_ui(u, this->p, 1);
500 mpz_mod(t, this->d, u);
501 if (mpz_cmp(t, this->exp1) != 0)
502 {
503 status = FAILED;
504 }
505
506 /* check that exp2 is d mod (q-1) */
507 mpz_sub_ui(u, this->q, 1);
508 mpz_mod(t, this->d, u);
509 if (mpz_cmp(t, this->exp2) != 0)
510 {
511 status = FAILED;
512 }
513
514 /* check that coeff is (q^-1) mod p */
515 mpz_mul(t, this->coeff, this->q);
516 mpz_mod(t, t, this->p);
517 if (mpz_cmp_ui(t, 1) != 0)
518 {
519 status = FAILED;
520 }
521
522 mpz_clear_randomized(t);
523 mpz_clear_randomized(u);
524 mpz_clear_randomized(q1);
525 if (status != SUCCESS)
526 {
527 DBG1("key integrity tests failed");
528 }
529 return status;
530 }
531
532 /**
533 * Internal generic constructor
534 */
535 static private_gmp_rsa_private_key_t *gmp_rsa_private_key_create_empty(void)
536 {
537 private_gmp_rsa_private_key_t *this = malloc_thing(private_gmp_rsa_private_key_t);
538
539 this->public.interface.get_type = (key_type_t (*)(private_key_t *this))get_type;
540 this->public.interface.sign = (bool (*)(private_key_t *this, signature_scheme_t scheme, chunk_t data, chunk_t *signature))sign;
541 this->public.interface.decrypt = (bool (*)(private_key_t *this, chunk_t crypto, chunk_t *plain))decrypt;
542 this->public.interface.get_keysize = (size_t (*) (private_key_t *this))get_keysize;
543 this->public.interface.get_id = (identification_t* (*) (private_key_t *this,id_type_t))get_id;
544 this->public.interface.get_public_key = (public_key_t* (*)(private_key_t *this))get_public_key;
545 this->public.interface.belongs_to = (bool (*) (private_key_t *this, public_key_t *public))belongs_to;
546 this->public.interface.get_encoding = (chunk_t(*)(private_key_t*))get_encoding;
547 this->public.interface.get_ref = (private_key_t* (*)(private_key_t *this))get_ref;
548 this->public.interface.destroy = (void (*)(private_key_t *this))destroy;
549
550 this->keyid = NULL;
551 this->keyid_info = NULL;
552 this->ref = 1;
553
554 return this;
555 }
556
557 /**
558 * Generate an RSA key of specified key size
559 */
560 static gmp_rsa_private_key_t *generate(size_t key_size)
561 {
562 mpz_t p, q, n, e, d, exp1, exp2, coeff;
563 mpz_t m, q1, t;
564 private_gmp_rsa_private_key_t *this = gmp_rsa_private_key_create_empty();
565
566 key_size = key_size / 8;
567
568 /* Get values of primes p and q */
569 if (compute_prime(this, key_size/2, &p) != SUCCESS)
570 {
571 free(this);
572 return NULL;
573 }
574 if (compute_prime(this, key_size/2, &q) != SUCCESS)
575 {
576 mpz_clear(p);
577 free(this);
578 return NULL;
579 }
580
581 mpz_init(t);
582 mpz_init(n);
583 mpz_init(d);
584 mpz_init(exp1);
585 mpz_init(exp2);
586 mpz_init(coeff);
587
588 /* Swapping Primes so p is larger then q */
589 if (mpz_cmp(p, q) < 0)
590 {
591 mpz_swap(p, q);
592 }
593
594 mpz_mul(n, p, q); /* n = p*q */
595 mpz_init_set_ui(e, PUBLIC_EXPONENT); /* assign public exponent */
596 mpz_init_set(m, p); /* m = p */
597 mpz_sub_ui(m, m, 1); /* m = m -1 */
598 mpz_init_set(q1, q); /* q1 = q */
599 mpz_sub_ui(q1, q1, 1); /* q1 = q1 -1 */
600 mpz_gcd(t, m, q1); /* t = gcd(p-1, q-1) */
601 mpz_mul(m, m, q1); /* m = (p-1)*(q-1) */
602 mpz_divexact(m, m, t); /* m = m / t */
603 mpz_gcd(t, m, e); /* t = gcd(m, e) */
604
605 mpz_invert(d, e, m); /* e has an inverse mod m */
606 if (mpz_cmp_ui(d, 0) < 0) /* make sure d is positive */
607 {
608 mpz_add(d, d, m);
609 }
610 mpz_sub_ui(t, p, 1); /* t = p-1 */
611 mpz_mod(exp1, d, t); /* exp1 = d mod p-1 */
612 mpz_sub_ui(t, q, 1); /* t = q-1 */
613 mpz_mod(exp2, d, t); /* exp2 = d mod q-1 */
614
615 mpz_invert(coeff, q, p); /* coeff = q^-1 mod p */
616 if (mpz_cmp_ui(coeff, 0) < 0) /* make coeff d is positive */
617 {
618 mpz_add(coeff, coeff, p);
619 }
620
621 mpz_clear_randomized(q1);
622 mpz_clear_randomized(m);
623 mpz_clear_randomized(t);
624
625 /* apply values */
626 *(this->p) = *p;
627 *(this->q) = *q;
628 *(this->n) = *n;
629 *(this->e) = *e;
630 *(this->d) = *d;
631 *(this->exp1) = *exp1;
632 *(this->exp2) = *exp2;
633 *(this->coeff) = *coeff;
634
635 /* set key size in bytes */
636 this->k = key_size;
637
638 return &this->public;
639 }
640
641 /**
642 * ASN.1 definition of a PKCS#1 RSA private key
643 */
644 static const asn1Object_t privkeyObjects[] = {
645 { 0, "RSAPrivateKey", ASN1_SEQUENCE, ASN1_NONE }, /* 0 */
646 { 1, "version", ASN1_INTEGER, ASN1_BODY }, /* 1 */
647 { 1, "modulus", ASN1_INTEGER, ASN1_BODY }, /* 2 */
648 { 1, "publicExponent", ASN1_INTEGER, ASN1_BODY }, /* 3 */
649 { 1, "privateExponent", ASN1_INTEGER, ASN1_BODY }, /* 4 */
650 { 1, "prime1", ASN1_INTEGER, ASN1_BODY }, /* 5 */
651 { 1, "prime2", ASN1_INTEGER, ASN1_BODY }, /* 6 */
652 { 1, "exponent1", ASN1_INTEGER, ASN1_BODY }, /* 7 */
653 { 1, "exponent2", ASN1_INTEGER, ASN1_BODY }, /* 8 */
654 { 1, "coefficient", ASN1_INTEGER, ASN1_BODY }, /* 9 */
655 { 1, "otherPrimeInfos", ASN1_SEQUENCE, ASN1_OPT |
656 ASN1_LOOP }, /* 10 */
657 { 2, "otherPrimeInfo", ASN1_SEQUENCE, ASN1_NONE }, /* 11 */
658 { 3, "prime", ASN1_INTEGER, ASN1_BODY }, /* 12 */
659 { 3, "exponent", ASN1_INTEGER, ASN1_BODY }, /* 13 */
660 { 3, "coefficient", ASN1_INTEGER, ASN1_BODY }, /* 14 */
661 { 1, "end opt or loop", ASN1_EOC, ASN1_END }, /* 15 */
662 { 0, "exit", ASN1_EOC, ASN1_EXIT }
663 };
664 #define PRIV_KEY_VERSION 1
665 #define PRIV_KEY_MODULUS 2
666 #define PRIV_KEY_PUB_EXP 3
667 #define PRIV_KEY_PRIV_EXP 4
668 #define PRIV_KEY_PRIME1 5
669 #define PRIV_KEY_PRIME2 6
670 #define PRIV_KEY_EXP1 7
671 #define PRIV_KEY_EXP2 8
672 #define PRIV_KEY_COEFF 9
673
674 /**
675 * load private key from a ASN1 encoded blob
676 */
677 static gmp_rsa_private_key_t *load(chunk_t blob)
678 {
679 asn1_parser_t *parser;
680 chunk_t object;
681 int objectID ;
682 bool success = FALSE;
683
684 private_gmp_rsa_private_key_t *this = gmp_rsa_private_key_create_empty();
685
686 mpz_init(this->n);
687 mpz_init(this->e);
688 mpz_init(this->p);
689 mpz_init(this->q);
690 mpz_init(this->d);
691 mpz_init(this->exp1);
692 mpz_init(this->exp2);
693 mpz_init(this->coeff);
694
695 parser = asn1_parser_create(privkeyObjects, blob);
696 parser->set_flags(parser, FALSE, TRUE);
697
698 while (parser->iterate(parser, &objectID, &object))
699 {
700 switch (objectID)
701 {
702 case PRIV_KEY_VERSION:
703 if (object.len > 0 && *object.ptr != 0)
704 {
705 goto end;
706 }
707 break;
708 case PRIV_KEY_MODULUS:
709 mpz_import(this->n, object.len, 1, 1, 1, 0, object.ptr);
710 break;
711 case PRIV_KEY_PUB_EXP:
712 mpz_import(this->e, object.len, 1, 1, 1, 0, object.ptr);
713 break;
714 case PRIV_KEY_PRIV_EXP:
715 mpz_import(this->d, object.len, 1, 1, 1, 0, object.ptr);
716 break;
717 case PRIV_KEY_PRIME1:
718 mpz_import(this->p, object.len, 1, 1, 1, 0, object.ptr);
719 break;
720 case PRIV_KEY_PRIME2:
721 mpz_import(this->q, object.len, 1, 1, 1, 0, object.ptr);
722 break;
723 case PRIV_KEY_EXP1:
724 mpz_import(this->exp1, object.len, 1, 1, 1, 0, object.ptr);
725 break;
726 case PRIV_KEY_EXP2:
727 mpz_import(this->exp2, object.len, 1, 1, 1, 0, object.ptr);
728 break;
729 case PRIV_KEY_COEFF:
730 mpz_import(this->coeff, object.len, 1, 1, 1, 0, object.ptr);
731 break;
732 }
733 }
734 success = parser->success(parser);
735
736 end:
737 parser->destroy(parser);
738 chunk_clear(&blob);
739
740 if (!success)
741 {
742 destroy(this);
743 return NULL;
744 }
745
746 this->k = (mpz_sizeinbase(this->n, 2) + 7) / BITS_PER_BYTE;
747
748 if (!gmp_rsa_public_key_build_id(this->n, this->e,
749 &this->keyid, &this->keyid_info))
750 {
751 destroy(this);
752 return NULL;
753 }
754
755 if (check(this) != SUCCESS)
756 {
757 destroy(this);
758 return NULL;
759 }
760 return &this->public;
761 }
762
763 typedef struct private_builder_t private_builder_t;
764 /**
765 * Builder implementation for key loading/generation
766 */
767 struct private_builder_t {
768 /** implements the builder interface */
769 builder_t public;
770 /** loaded/generated private key */
771 gmp_rsa_private_key_t *key;
772 };
773
774 /**
775 * Implementation of builder_t.build
776 */
777 static gmp_rsa_private_key_t *build(private_builder_t *this)
778 {
779 gmp_rsa_private_key_t *key = this->key;
780
781 free(this);
782 return key;
783 }
784
785 /**
786 * Implementation of builder_t.add
787 */
788 static void add(private_builder_t *this, builder_part_t part, ...)
789 {
790 va_list args;
791
792 if (this->key)
793 {
794 DBG1("ignoring surplus build part %N", builder_part_names, part);
795 return;
796 }
797
798 switch (part)
799 {
800 case BUILD_BLOB_ASN1_DER:
801 {
802 va_start(args, part);
803 this->key = load(va_arg(args, chunk_t));
804 va_end(args);
805 break;
806 }
807 case BUILD_KEY_SIZE:
808 {
809 va_start(args, part);
810 this->key = generate(va_arg(args, u_int));
811 va_end(args);
812 break;
813 }
814 default:
815 DBG1("ignoring unsupported build part %N", builder_part_names, part);
816 break;
817 }
818 }
819
820 /**
821 * Builder construction function
822 */
823 builder_t *gmp_rsa_private_key_builder(key_type_t type)
824 {
825 private_builder_t *this;
826
827 if (type != KEY_RSA)
828 {
829 return NULL;
830 }
831
832 this = malloc_thing(private_builder_t);
833
834 this->key = NULL;
835 this->public.add = (void(*)(builder_t *this, builder_part_t part, ...))add;
836 this->public.build = (void*(*)(builder_t *this))build;
837
838 return &this->public;
839 }
840