fixed unsave calculation of mpz_export length
[strongswan.git] / src / libstrongswan / plugins / gmp / gmp_rsa_private_key.c
1 /*
2 * Copyright (C) 2005-2008 Martin Willi
3 * Copyright (C) 2005 Jan Hutter
4 * Hochschule fuer Technik Rapperswil
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * for more details.
15 *
16 * $Id$
17 */
18
19 #include <gmp.h>
20 #include <sys/stat.h>
21 #include <unistd.h>
22 #include <string.h>
23
24 #include "gmp_rsa_private_key.h"
25 #include "gmp_rsa_public_key.h"
26
27 #include <debug.h>
28 #include <asn1/oid.h>
29 #include <asn1/asn1.h>
30 #include <asn1/asn1_parser.h>
31
32 /**
33 * Public exponent to use for key generation.
34 */
35 #define PUBLIC_EXPONENT 0x10001
36
37 typedef struct private_gmp_rsa_private_key_t private_gmp_rsa_private_key_t;
38
39 /**
40 * Private data of a gmp_rsa_private_key_t object.
41 */
42 struct private_gmp_rsa_private_key_t {
43 /**
44 * Public interface for this signer.
45 */
46 gmp_rsa_private_key_t public;
47
48 /**
49 * Version of key, as encoded in PKCS#1
50 */
51 u_int version;
52
53 /**
54 * Public modulus.
55 */
56 mpz_t n;
57
58 /**
59 * Public exponent.
60 */
61 mpz_t e;
62
63 /**
64 * Private prime 1.
65 */
66 mpz_t p;
67
68 /**
69 * Private Prime 2.
70 */
71 mpz_t q;
72
73 /**
74 * Private exponent.
75 */
76 mpz_t d;
77
78 /**
79 * Private exponent 1.
80 */
81 mpz_t exp1;
82
83 /**
84 * Private exponent 2.
85 */
86 mpz_t exp2;
87
88 /**
89 * Private coefficient.
90 */
91 mpz_t coeff;
92
93 /**
94 * Keysize in bytes.
95 */
96 size_t k;
97
98 /**
99 * Keyid formed as a SHA-1 hash of a publicKey object
100 */
101 identification_t* keyid;
102
103 /**
104 * Keyid formed as a SHA-1 hash of a publicKeyInfo object
105 */
106 identification_t* keyid_info;
107
108 /**
109 * reference count
110 */
111 refcount_t ref;
112 };
113
114 /**
115 * shared functions, implemented in gmp_rsa_public_key.c
116 */
117 bool gmp_rsa_public_key_build_id(mpz_t n, mpz_t e, identification_t **keyid,
118 identification_t **keyid_info);
119 gmp_rsa_public_key_t *gmp_rsa_public_key_create_from_n_e(mpz_t n, mpz_t e);
120
121 /**
122 * Auxiliary function overwriting private key material with zero bytes
123 */
124 static void mpz_clear_randomized(mpz_t z)
125 {
126 size_t len = mpz_size(z) * GMP_LIMB_BITS / BITS_PER_BYTE;
127 u_int8_t *random = alloca(len);
128
129 memset(random, 0, len);
130 /* overwrite mpz_t with zero bytes before clearing it */
131 mpz_import(z, len, 1, 1, 1, 0, random);
132 mpz_clear(z);
133 }
134
135 /**
136 * Create a mpz prime of at least prime_size
137 */
138 static status_t compute_prime(private_gmp_rsa_private_key_t *this,
139 size_t prime_size, mpz_t *prime)
140 {
141 rng_t *rng;
142 chunk_t random_bytes;
143
144 rng = lib->crypto->create_rng(lib->crypto, RNG_REAL);
145 if (!rng)
146 {
147 DBG1("no RNG of quality %N found", rng_quality_names, RNG_REAL);
148 return FAILED;
149 }
150
151 mpz_init(*prime);
152 do
153 {
154 rng->allocate_bytes(rng, prime_size, &random_bytes);
155 /* make sure most significant bit is set */
156 random_bytes.ptr[0] = random_bytes.ptr[0] | 0x80;
157
158 mpz_import(*prime, random_bytes.len, 1, 1, 1, 0, random_bytes.ptr);
159 mpz_nextprime (*prime, *prime);
160 chunk_clear(&random_bytes);
161 }
162 /* check if it isn't too large */
163 while (((mpz_sizeinbase(*prime, 2) + 7) / 8) > prime_size);
164
165 rng->destroy(rng);
166 return SUCCESS;
167 }
168
169 /**
170 * PKCS#1 RSADP function
171 */
172 static chunk_t rsadp(private_gmp_rsa_private_key_t *this, chunk_t data)
173 {
174 mpz_t t1, t2;
175 chunk_t decrypted;
176
177 mpz_init(t1);
178 mpz_init(t2);
179
180 mpz_import(t1, data.len, 1, 1, 1, 0, data.ptr);
181
182 mpz_powm(t2, t1, this->exp1, this->p); /* m1 = c^dP mod p */
183 mpz_powm(t1, t1, this->exp2, this->q); /* m2 = c^dQ mod Q */
184 mpz_sub(t2, t2, t1); /* h = qInv (m1 - m2) mod p */
185 mpz_mod(t2, t2, this->p);
186 mpz_mul(t2, t2, this->coeff);
187 mpz_mod(t2, t2, this->p);
188
189 mpz_mul(t2, t2, this->q); /* m = m2 + h q */
190 mpz_add(t1, t1, t2);
191
192 decrypted.len = this->k;
193 decrypted.ptr = mpz_export(NULL, NULL, 1, decrypted.len, 1, 0, t1);
194
195 mpz_clear_randomized(t1);
196 mpz_clear_randomized(t2);
197
198 return decrypted;
199 }
200
201 /**
202 * PKCS#1 RSASP1 function
203 */
204 static chunk_t rsasp1(private_gmp_rsa_private_key_t *this, chunk_t data)
205 {
206 return rsadp(this, data);
207 }
208
209 /**
210 * Implementation of gmp_rsa_private_key_t.build_emsa_pkcs1_signature.
211 */
212 static bool build_emsa_pkcs1_signature(private_gmp_rsa_private_key_t *this,
213 hash_algorithm_t hash_algorithm,
214 chunk_t data, chunk_t *signature)
215 {
216 hasher_t *hasher;
217 chunk_t em, digestInfo, hash;
218 int hash_oid = hasher_algorithm_to_oid(hash_algorithm);
219
220 if (hash_oid == OID_UNKNOWN)
221 {
222 return FALSE;
223 }
224
225 /* get hasher */
226 hasher = lib->crypto->create_hasher(lib->crypto, hash_algorithm);
227 if (hasher == NULL)
228 {
229 return FALSE;
230 }
231
232 /* build hash */
233 hasher->allocate_hash(hasher, data, &hash);
234 hasher->destroy(hasher);
235
236 /* build DER-encoded digestInfo */
237 digestInfo = asn1_wrap(ASN1_SEQUENCE, "cm",
238 asn1_algorithmIdentifier(hash_oid),
239 asn1_simple_object(ASN1_OCTET_STRING, hash)
240 );
241 chunk_free(&hash);
242
243 /* build chunk to rsa-decrypt:
244 * EM = 0x00 || 0x01 || PS || 0x00 || T.
245 * PS = 0xFF padding, with length to fill em
246 * T = encoded_hash
247 */
248 em.len = this->k;
249 em.ptr = malloc(em.len);
250
251 /* fill em with padding */
252 memset(em.ptr, 0xFF, em.len);
253 /* set magic bytes */
254 *(em.ptr) = 0x00;
255 *(em.ptr+1) = 0x01;
256 *(em.ptr + em.len - digestInfo.len - 1) = 0x00;
257 /* set DER-encoded hash */
258 memcpy(em.ptr + em.len - digestInfo.len, digestInfo.ptr, digestInfo.len);
259
260 /* build signature */
261 *signature = rsasp1(this, em);
262
263 free(digestInfo.ptr);
264 free(em.ptr);
265
266 return TRUE;
267 }
268
269 /**
270 * Implementation of gmp_rsa_private_key.destroy.
271 */
272 static key_type_t get_type(private_gmp_rsa_private_key_t *this)
273 {
274 return KEY_RSA;
275 }
276
277 /**
278 * Implementation of gmp_rsa_private_key.destroy.
279 */
280 static bool sign(private_gmp_rsa_private_key_t *this, signature_scheme_t scheme,
281 chunk_t data, chunk_t *signature)
282 {
283 switch (scheme)
284 {
285 case SIGN_DEFAULT:
286 /* default is EMSA-PKCS1 using SHA1 */
287 case SIGN_RSA_EMSA_PKCS1_SHA1:
288 return build_emsa_pkcs1_signature(this, HASH_SHA1, data, signature);
289 case SIGN_RSA_EMSA_PKCS1_SHA256:
290 return build_emsa_pkcs1_signature(this, HASH_SHA256, data, signature);
291 case SIGN_RSA_EMSA_PKCS1_SHA384:
292 return build_emsa_pkcs1_signature(this, HASH_SHA384, data, signature);
293 case SIGN_RSA_EMSA_PKCS1_SHA512:
294 return build_emsa_pkcs1_signature(this, HASH_SHA512, data, signature);
295 case SIGN_RSA_EMSA_PKCS1_MD5:
296 return build_emsa_pkcs1_signature(this, HASH_MD5, data, signature);
297 default:
298 DBG1("signature scheme %N not supported in RSA",
299 signature_scheme_names, scheme);
300 return FALSE;
301 }
302 }
303
304 /**
305 * Implementation of gmp_rsa_private_key.destroy.
306 */
307 static bool decrypt(private_gmp_rsa_private_key_t *this,
308 chunk_t crypto, chunk_t *plain)
309 {
310 DBG1("RSA private key decryption not implemented");
311 return FALSE;
312 }
313
314 /**
315 * Implementation of gmp_rsa_private_key.destroy.
316 */
317 static size_t get_keysize(private_gmp_rsa_private_key_t *this)
318 {
319 return this->k;
320 }
321
322 /**
323 * Implementation of gmp_rsa_private_key.destroy.
324 */
325 static identification_t* get_id(private_gmp_rsa_private_key_t *this,
326 id_type_t type)
327 {
328 switch (type)
329 {
330 case ID_PUBKEY_INFO_SHA1:
331 return this->keyid_info;
332 case ID_PUBKEY_SHA1:
333 return this->keyid;
334 default:
335 return NULL;
336 }
337 }
338
339 /**
340 * Implementation of gmp_rsa_private_key.destroy.
341 */
342 static gmp_rsa_public_key_t* get_public_key(private_gmp_rsa_private_key_t *this)
343 {
344 return gmp_rsa_public_key_create_from_n_e(this->n, this->e);
345 }
346
347 /**
348 * Implementation of gmp_rsa_private_key.destroy.
349 */
350 static bool belongs_to(private_gmp_rsa_private_key_t *this, public_key_t *public)
351 {
352 identification_t *keyid;
353
354 if (public->get_type(public) != KEY_RSA)
355 {
356 return FALSE;
357 }
358 keyid = public->get_id(public, ID_PUBKEY_SHA1);
359 if (keyid && keyid->equals(keyid, this->keyid))
360 {
361 return TRUE;
362 }
363 keyid = public->get_id(public, ID_PUBKEY_INFO_SHA1);
364 if (keyid && keyid->equals(keyid, this->keyid_info))
365 {
366 return TRUE;
367 }
368 return FALSE;
369 }
370
371 /**
372 * convert a MP integer into a DER coded ASN.1 object
373 */
374 chunk_t gmp_mpz_to_asn1(const mpz_t value)
375 {
376 chunk_t n;
377
378 n.ptr = mpz_export(NULL, &n.len, 1, 1, 1, 0, value);
379
380 return asn1_wrap(ASN1_INTEGER, "m", n);
381 }
382
383 /**
384 * Implementation of private_key_t.get_encoding.
385 */
386 static chunk_t get_encoding(private_gmp_rsa_private_key_t *this)
387 {
388 return asn1_wrap(ASN1_SEQUENCE, "cmmmmmmmm",
389 ASN1_INTEGER_0,
390 gmp_mpz_to_asn1(this->n),
391 gmp_mpz_to_asn1(this->e),
392 gmp_mpz_to_asn1(this->d),
393 gmp_mpz_to_asn1(this->p),
394 gmp_mpz_to_asn1(this->q),
395 gmp_mpz_to_asn1(this->exp1),
396 gmp_mpz_to_asn1(this->exp2),
397 gmp_mpz_to_asn1(this->coeff));
398 }
399
400 /**
401 * Implementation of gmp_rsa_private_key.destroy.
402 */
403 static private_gmp_rsa_private_key_t* get_ref(private_gmp_rsa_private_key_t *this)
404 {
405 ref_get(&this->ref);
406 return this;
407
408 }
409
410 /**
411 * Implementation of gmp_rsa_private_key.destroy.
412 */
413 static void destroy(private_gmp_rsa_private_key_t *this)
414 {
415 if (ref_put(&this->ref))
416 {
417 mpz_clear_randomized(this->n);
418 mpz_clear_randomized(this->e);
419 mpz_clear_randomized(this->p);
420 mpz_clear_randomized(this->q);
421 mpz_clear_randomized(this->d);
422 mpz_clear_randomized(this->exp1);
423 mpz_clear_randomized(this->exp2);
424 mpz_clear_randomized(this->coeff);
425 DESTROY_IF(this->keyid);
426 DESTROY_IF(this->keyid_info);
427 free(this);
428 }
429 }
430
431 /**
432 * Check the loaded key if it is valid and usable
433 */
434 static status_t check(private_gmp_rsa_private_key_t *this)
435 {
436 mpz_t t, u, q1;
437 status_t status = SUCCESS;
438
439 /* PKCS#1 1.5 section 6 requires modulus to have at least 12 octets.
440 * We actually require more (for security).
441 */
442 if (this->k < 512/8)
443 {
444 DBG1("key shorter than 512 bits");
445 return FAILED;
446 }
447
448 /* we picked a max modulus size to simplify buffer allocation */
449 if (this->k > 8192/8)
450 {
451 DBG1("key larger thant 8192 bits");
452 return FAILED;
453 }
454
455 mpz_init(t);
456 mpz_init(u);
457 mpz_init(q1);
458
459 /* check that n == p * q */
460 mpz_mul(u, this->p, this->q);
461 if (mpz_cmp(u, this->n) != 0)
462 {
463 status = FAILED;
464 }
465
466 /* check that e divides neither p-1 nor q-1 */
467 mpz_sub_ui(t, this->p, 1);
468 mpz_mod(t, t, this->e);
469 if (mpz_cmp_ui(t, 0) == 0)
470 {
471 status = FAILED;
472 }
473
474 mpz_sub_ui(t, this->q, 1);
475 mpz_mod(t, t, this->e);
476 if (mpz_cmp_ui(t, 0) == 0)
477 {
478 status = FAILED;
479 }
480
481 /* check that d is e^-1 (mod lcm(p-1, q-1)) */
482 /* see PKCS#1v2, aka RFC 2437, for the "lcm" */
483 mpz_sub_ui(q1, this->q, 1);
484 mpz_sub_ui(u, this->p, 1);
485 mpz_gcd(t, u, q1); /* t := gcd(p-1, q-1) */
486 mpz_mul(u, u, q1); /* u := (p-1) * (q-1) */
487 mpz_divexact(u, u, t); /* u := lcm(p-1, q-1) */
488
489 mpz_mul(t, this->d, this->e);
490 mpz_mod(t, t, u);
491 if (mpz_cmp_ui(t, 1) != 0)
492 {
493 status = FAILED;
494 }
495
496 /* check that exp1 is d mod (p-1) */
497 mpz_sub_ui(u, this->p, 1);
498 mpz_mod(t, this->d, u);
499 if (mpz_cmp(t, this->exp1) != 0)
500 {
501 status = FAILED;
502 }
503
504 /* check that exp2 is d mod (q-1) */
505 mpz_sub_ui(u, this->q, 1);
506 mpz_mod(t, this->d, u);
507 if (mpz_cmp(t, this->exp2) != 0)
508 {
509 status = FAILED;
510 }
511
512 /* check that coeff is (q^-1) mod p */
513 mpz_mul(t, this->coeff, this->q);
514 mpz_mod(t, t, this->p);
515 if (mpz_cmp_ui(t, 1) != 0)
516 {
517 status = FAILED;
518 }
519
520 mpz_clear_randomized(t);
521 mpz_clear_randomized(u);
522 mpz_clear_randomized(q1);
523 if (status != SUCCESS)
524 {
525 DBG1("key integrity tests failed");
526 }
527 return status;
528 }
529
530 /**
531 * Internal generic constructor
532 */
533 static private_gmp_rsa_private_key_t *gmp_rsa_private_key_create_empty(void)
534 {
535 private_gmp_rsa_private_key_t *this = malloc_thing(private_gmp_rsa_private_key_t);
536
537 this->public.interface.get_type = (key_type_t (*)(private_key_t *this))get_type;
538 this->public.interface.sign = (bool (*)(private_key_t *this, signature_scheme_t scheme, chunk_t data, chunk_t *signature))sign;
539 this->public.interface.decrypt = (bool (*)(private_key_t *this, chunk_t crypto, chunk_t *plain))decrypt;
540 this->public.interface.get_keysize = (size_t (*) (private_key_t *this))get_keysize;
541 this->public.interface.get_id = (identification_t* (*) (private_key_t *this,id_type_t))get_id;
542 this->public.interface.get_public_key = (public_key_t* (*)(private_key_t *this))get_public_key;
543 this->public.interface.belongs_to = (bool (*) (private_key_t *this, public_key_t *public))belongs_to;
544 this->public.interface.get_encoding = (chunk_t(*)(private_key_t*))get_encoding;
545 this->public.interface.get_ref = (private_key_t* (*)(private_key_t *this))get_ref;
546 this->public.interface.destroy = (void (*)(private_key_t *this))destroy;
547
548 this->keyid = NULL;
549 this->keyid_info = NULL;
550 this->ref = 1;
551
552 return this;
553 }
554
555 /**
556 * Generate an RSA key of specified key size
557 */
558 static gmp_rsa_private_key_t *generate(size_t key_size)
559 {
560 mpz_t p, q, n, e, d, exp1, exp2, coeff;
561 mpz_t m, q1, t;
562 private_gmp_rsa_private_key_t *this = gmp_rsa_private_key_create_empty();
563
564 key_size = key_size / 8;
565
566 /* Get values of primes p and q */
567 if (compute_prime(this, key_size/2, &p) != SUCCESS)
568 {
569 free(this);
570 return NULL;
571 }
572 if (compute_prime(this, key_size/2, &q) != SUCCESS)
573 {
574 mpz_clear(p);
575 free(this);
576 return NULL;
577 }
578
579 mpz_init(t);
580 mpz_init(n);
581 mpz_init(d);
582 mpz_init(exp1);
583 mpz_init(exp2);
584 mpz_init(coeff);
585
586 /* Swapping Primes so p is larger then q */
587 if (mpz_cmp(p, q) < 0)
588 {
589 mpz_swap(p, q);
590 }
591
592 mpz_mul(n, p, q); /* n = p*q */
593 mpz_init_set_ui(e, PUBLIC_EXPONENT); /* assign public exponent */
594 mpz_init_set(m, p); /* m = p */
595 mpz_sub_ui(m, m, 1); /* m = m -1 */
596 mpz_init_set(q1, q); /* q1 = q */
597 mpz_sub_ui(q1, q1, 1); /* q1 = q1 -1 */
598 mpz_gcd(t, m, q1); /* t = gcd(p-1, q-1) */
599 mpz_mul(m, m, q1); /* m = (p-1)*(q-1) */
600 mpz_divexact(m, m, t); /* m = m / t */
601 mpz_gcd(t, m, e); /* t = gcd(m, e) */
602
603 mpz_invert(d, e, m); /* e has an inverse mod m */
604 if (mpz_cmp_ui(d, 0) < 0) /* make sure d is positive */
605 {
606 mpz_add(d, d, m);
607 }
608 mpz_sub_ui(t, p, 1); /* t = p-1 */
609 mpz_mod(exp1, d, t); /* exp1 = d mod p-1 */
610 mpz_sub_ui(t, q, 1); /* t = q-1 */
611 mpz_mod(exp2, d, t); /* exp2 = d mod q-1 */
612
613 mpz_invert(coeff, q, p); /* coeff = q^-1 mod p */
614 if (mpz_cmp_ui(coeff, 0) < 0) /* make coeff d is positive */
615 {
616 mpz_add(coeff, coeff, p);
617 }
618
619 mpz_clear_randomized(q1);
620 mpz_clear_randomized(m);
621 mpz_clear_randomized(t);
622
623 /* apply values */
624 *(this->p) = *p;
625 *(this->q) = *q;
626 *(this->n) = *n;
627 *(this->e) = *e;
628 *(this->d) = *d;
629 *(this->exp1) = *exp1;
630 *(this->exp2) = *exp2;
631 *(this->coeff) = *coeff;
632
633 /* set key size in bytes */
634 this->k = key_size;
635
636 return &this->public;
637 }
638
639 /**
640 * ASN.1 definition of a PKCS#1 RSA private key
641 */
642 static const asn1Object_t privkeyObjects[] = {
643 { 0, "RSAPrivateKey", ASN1_SEQUENCE, ASN1_NONE }, /* 0 */
644 { 1, "version", ASN1_INTEGER, ASN1_BODY }, /* 1 */
645 { 1, "modulus", ASN1_INTEGER, ASN1_BODY }, /* 2 */
646 { 1, "publicExponent", ASN1_INTEGER, ASN1_BODY }, /* 3 */
647 { 1, "privateExponent", ASN1_INTEGER, ASN1_BODY }, /* 4 */
648 { 1, "prime1", ASN1_INTEGER, ASN1_BODY }, /* 5 */
649 { 1, "prime2", ASN1_INTEGER, ASN1_BODY }, /* 6 */
650 { 1, "exponent1", ASN1_INTEGER, ASN1_BODY }, /* 7 */
651 { 1, "exponent2", ASN1_INTEGER, ASN1_BODY }, /* 8 */
652 { 1, "coefficient", ASN1_INTEGER, ASN1_BODY }, /* 9 */
653 { 1, "otherPrimeInfos", ASN1_SEQUENCE, ASN1_OPT |
654 ASN1_LOOP }, /* 10 */
655 { 2, "otherPrimeInfo", ASN1_SEQUENCE, ASN1_NONE }, /* 11 */
656 { 3, "prime", ASN1_INTEGER, ASN1_BODY }, /* 12 */
657 { 3, "exponent", ASN1_INTEGER, ASN1_BODY }, /* 13 */
658 { 3, "coefficient", ASN1_INTEGER, ASN1_BODY }, /* 14 */
659 { 1, "end opt or loop", ASN1_EOC, ASN1_END }, /* 15 */
660 { 0, "exit", ASN1_EOC, ASN1_EXIT }
661 };
662 #define PRIV_KEY_VERSION 1
663 #define PRIV_KEY_MODULUS 2
664 #define PRIV_KEY_PUB_EXP 3
665 #define PRIV_KEY_PRIV_EXP 4
666 #define PRIV_KEY_PRIME1 5
667 #define PRIV_KEY_PRIME2 6
668 #define PRIV_KEY_EXP1 7
669 #define PRIV_KEY_EXP2 8
670 #define PRIV_KEY_COEFF 9
671
672 /**
673 * load private key from a ASN1 encoded blob
674 */
675 static gmp_rsa_private_key_t *load(chunk_t blob)
676 {
677 asn1_parser_t *parser;
678 chunk_t object;
679 int objectID ;
680 bool success = FALSE;
681
682 private_gmp_rsa_private_key_t *this = gmp_rsa_private_key_create_empty();
683
684 mpz_init(this->n);
685 mpz_init(this->e);
686 mpz_init(this->p);
687 mpz_init(this->q);
688 mpz_init(this->d);
689 mpz_init(this->exp1);
690 mpz_init(this->exp2);
691 mpz_init(this->coeff);
692
693 parser = asn1_parser_create(privkeyObjects, blob);
694 parser->set_flags(parser, FALSE, TRUE);
695
696 while (parser->iterate(parser, &objectID, &object))
697 {
698 switch (objectID)
699 {
700 case PRIV_KEY_VERSION:
701 if (object.len > 0 && *object.ptr != 0)
702 {
703 goto end;
704 }
705 break;
706 case PRIV_KEY_MODULUS:
707 mpz_import(this->n, object.len, 1, 1, 1, 0, object.ptr);
708 break;
709 case PRIV_KEY_PUB_EXP:
710 mpz_import(this->e, object.len, 1, 1, 1, 0, object.ptr);
711 break;
712 case PRIV_KEY_PRIV_EXP:
713 mpz_import(this->d, object.len, 1, 1, 1, 0, object.ptr);
714 break;
715 case PRIV_KEY_PRIME1:
716 mpz_import(this->p, object.len, 1, 1, 1, 0, object.ptr);
717 break;
718 case PRIV_KEY_PRIME2:
719 mpz_import(this->q, object.len, 1, 1, 1, 0, object.ptr);
720 break;
721 case PRIV_KEY_EXP1:
722 mpz_import(this->exp1, object.len, 1, 1, 1, 0, object.ptr);
723 break;
724 case PRIV_KEY_EXP2:
725 mpz_import(this->exp2, object.len, 1, 1, 1, 0, object.ptr);
726 break;
727 case PRIV_KEY_COEFF:
728 mpz_import(this->coeff, object.len, 1, 1, 1, 0, object.ptr);
729 break;
730 }
731 }
732 success = parser->success(parser);
733
734 end:
735 parser->destroy(parser);
736 chunk_clear(&blob);
737
738 if (!success)
739 {
740 destroy(this);
741 return NULL;
742 }
743
744 this->k = (mpz_sizeinbase(this->n, 2) + 7) / BITS_PER_BYTE;
745
746 if (!gmp_rsa_public_key_build_id(this->n, this->e,
747 &this->keyid, &this->keyid_info))
748 {
749 destroy(this);
750 return NULL;
751 }
752
753 if (check(this) != SUCCESS)
754 {
755 destroy(this);
756 return NULL;
757 }
758 return &this->public;
759 }
760
761 typedef struct private_builder_t private_builder_t;
762 /**
763 * Builder implementation for key loading/generation
764 */
765 struct private_builder_t {
766 /** implements the builder interface */
767 builder_t public;
768 /** loaded/generated private key */
769 gmp_rsa_private_key_t *key;
770 };
771
772 /**
773 * Implementation of builder_t.build
774 */
775 static gmp_rsa_private_key_t *build(private_builder_t *this)
776 {
777 gmp_rsa_private_key_t *key = this->key;
778
779 free(this);
780 return key;
781 }
782
783 /**
784 * Implementation of builder_t.add
785 */
786 static void add(private_builder_t *this, builder_part_t part, ...)
787 {
788 va_list args;
789
790 if (this->key)
791 {
792 DBG1("ignoring surplus build part %N", builder_part_names, part);
793 return;
794 }
795
796 switch (part)
797 {
798 case BUILD_BLOB_ASN1_DER:
799 {
800 va_start(args, part);
801 this->key = load(va_arg(args, chunk_t));
802 va_end(args);
803 break;
804 }
805 case BUILD_KEY_SIZE:
806 {
807 va_start(args, part);
808 this->key = generate(va_arg(args, u_int));
809 va_end(args);
810 break;
811 }
812 default:
813 DBG1("ignoring unsupported build part %N", builder_part_names, part);
814 break;
815 }
816 }
817
818 /**
819 * Builder construction function
820 */
821 builder_t *gmp_rsa_private_key_builder(key_type_t type)
822 {
823 private_builder_t *this;
824
825 if (type != KEY_RSA)
826 {
827 return NULL;
828 }
829
830 this = malloc_thing(private_builder_t);
831
832 this->key = NULL;
833 this->public.add = (void(*)(builder_t *this, builder_part_t part, ...))add;
834 this->public.build = (void*(*)(builder_t *this))build;
835
836 return &this->public;
837 }
838