(no commit message)
[strongswan.git] / src / libcrypto / libsha2 / sha2.c
1 /*
2 * sha512.c
3 *
4 * Written by Jari Ruusu, April 16 2001
5 *
6 * Copyright 2001 by Jari Ruusu.
7 * Redistribution of this file is permitted under the GNU Public License.
8 */
9
10 #ifdef __KERNEL__
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #else
14 #include <string.h>
15 #include <sys/types.h>
16 #endif
17 #include "sha2.h"
18
19 /* Define one or more of these. If none is defined, you get all of them */
20 #if !defined(SHA256_NEEDED)&&!defined(SHA512_NEEDED)&&!defined(SHA384_NEEDED)
21 # define SHA256_NEEDED 1
22 # define SHA512_NEEDED 1
23 # define SHA384_NEEDED 1
24 #endif
25
26 #if defined(SHA256_NEEDED)
27 static const u_int32_t sha256_hashInit[8] = {
28 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c,
29 0x1f83d9ab, 0x5be0cd19
30 };
31 static const u_int32_t sha256_K[64] = {
32 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
33 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
34 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
35 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
36 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
37 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
38 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
39 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
40 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
41 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
42 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
43 };
44 #endif
45
46 #if defined(SHA512_NEEDED)
47 static const u_int64_t sha512_hashInit[8] = {
48 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL,
49 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
50 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
51 };
52 #endif
53
54 #if defined(SHA384_NEEDED)
55 static const u_int64_t sha384_hashInit[8] = {
56 0xcbbb9d5dc1059ed8ULL, 0x629a292a367cd507ULL, 0x9159015a3070dd17ULL,
57 0x152fecd8f70e5939ULL, 0x67332667ffc00b31ULL, 0x8eb44a8768581511ULL,
58 0xdb0c2e0d64f98fa7ULL, 0x47b5481dbefa4fa4ULL
59 };
60 #endif
61
62 #if defined(SHA512_NEEDED) || defined(SHA384_NEEDED)
63 static const u_int64_t sha512_K[80] = {
64 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL,
65 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
66 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL,
67 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
68 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL,
69 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
70 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL,
71 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
72 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL,
73 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
74 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL,
75 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
76 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL,
77 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
78 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL,
79 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
80 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL,
81 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
82 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL,
83 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
84 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL,
85 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
86 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL,
87 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
88 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL,
89 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
90 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
91 };
92 #endif
93
94 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
95 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
96 #define R(x,y) ((y) >> (x))
97
98 #if defined(SHA256_NEEDED)
99 void sha256_init(sha256_context *ctx)
100 {
101 memcpy(&ctx->sha_H[0], &sha256_hashInit[0], sizeof(ctx->sha_H));
102 ctx->sha_blocks = 0;
103 ctx->sha_bufCnt = 0;
104 }
105
106 #define S(x,y) (((y) >> (x)) | ((y) << (32 - (x))))
107 #define uSig0(x) ((S(2,(x))) ^ (S(13,(x))) ^ (S(22,(x))))
108 #define uSig1(x) ((S(6,(x))) ^ (S(11,(x))) ^ (S(25,(x))))
109 #define lSig0(x) ((S(7,(x))) ^ (S(18,(x))) ^ (R(3,(x))))
110 #define lSig1(x) ((S(17,(x))) ^ (S(19,(x))) ^ (R(10,(x))))
111
112 static void sha256_transform(sha256_context *ctx, const unsigned char *datap)
113 {
114 register int j;
115 u_int32_t a, b, c, d, e, f, g, h;
116 u_int32_t T1, T2, W[64], Wm2, Wm15;
117
118 /* read the data, big endian byte order */
119 j = 0;
120 do {
121 W[j] = (((u_int32_t)(datap[0]))<<24) | (((u_int32_t)(datap[1]))<<16) |
122 (((u_int32_t)(datap[2]))<<8 ) | ((u_int32_t)(datap[3]));
123 datap += 4;
124 } while(++j < 16);
125
126 /* initialize variables a...h */
127 a = ctx->sha_H[0];
128 b = ctx->sha_H[1];
129 c = ctx->sha_H[2];
130 d = ctx->sha_H[3];
131 e = ctx->sha_H[4];
132 f = ctx->sha_H[5];
133 g = ctx->sha_H[6];
134 h = ctx->sha_H[7];
135
136 /* apply compression function */
137 j = 0;
138 do {
139 if(j >= 16) {
140 Wm2 = W[j - 2];
141 Wm15 = W[j - 15];
142 W[j] = lSig1(Wm2) + W[j - 7] + lSig0(Wm15) + W[j - 16];
143 }
144 T1 = h + uSig1(e) + Ch(e,f,g) + sha256_K[j] + W[j];
145 T2 = uSig0(a) + Maj(a,b,c);
146 h = g; g = f; f = e;
147 e = d + T1;
148 d = c; c = b; b = a;
149 a = T1 + T2;
150 } while(++j < 64);
151
152 /* compute intermediate hash value */
153 ctx->sha_H[0] += a;
154 ctx->sha_H[1] += b;
155 ctx->sha_H[2] += c;
156 ctx->sha_H[3] += d;
157 ctx->sha_H[4] += e;
158 ctx->sha_H[5] += f;
159 ctx->sha_H[6] += g;
160 ctx->sha_H[7] += h;
161
162 ctx->sha_blocks++;
163 }
164
165 void sha256_write(sha256_context *ctx, const unsigned char *datap, int length)
166 {
167 while(length > 0) {
168 if(!ctx->sha_bufCnt) {
169 while(length >= sizeof(ctx->sha_out)) {
170 sha256_transform(ctx, datap);
171 datap += sizeof(ctx->sha_out);
172 length -= sizeof(ctx->sha_out);
173 }
174 if(!length) return;
175 }
176 ctx->sha_out[ctx->sha_bufCnt] = *datap++;
177 length--;
178 if(++ctx->sha_bufCnt == sizeof(ctx->sha_out)) {
179 sha256_transform(ctx, &ctx->sha_out[0]);
180 ctx->sha_bufCnt = 0;
181 }
182 }
183 }
184
185 void sha256_final(sha256_context *ctx)
186 {
187 register int j;
188 u_int64_t bitLength;
189 u_int32_t i;
190 unsigned char padByte, *datap;
191
192 bitLength = (ctx->sha_blocks << 9) | (ctx->sha_bufCnt << 3);
193 padByte = 0x80;
194 sha256_write(ctx, &padByte, 1);
195
196 /* pad extra space with zeroes */
197 padByte = 0;
198 while(ctx->sha_bufCnt != 56) {
199 sha256_write(ctx, &padByte, 1);
200 }
201
202 /* write bit length, big endian byte order */
203 ctx->sha_out[56] = bitLength >> 56;
204 ctx->sha_out[57] = bitLength >> 48;
205 ctx->sha_out[58] = bitLength >> 40;
206 ctx->sha_out[59] = bitLength >> 32;
207 ctx->sha_out[60] = bitLength >> 24;
208 ctx->sha_out[61] = bitLength >> 16;
209 ctx->sha_out[62] = bitLength >> 8;
210 ctx->sha_out[63] = bitLength;
211 sha256_transform(ctx, &ctx->sha_out[0]);
212
213 /* return results in ctx->sha_out[0...31] */
214 datap = &ctx->sha_out[0];
215 j = 0;
216 do {
217 i = ctx->sha_H[j];
218 datap[0] = i >> 24;
219 datap[1] = i >> 16;
220 datap[2] = i >> 8;
221 datap[3] = i;
222 datap += 4;
223 } while(++j < 8);
224
225 /* clear sensitive information */
226 memset(&ctx->sha_out[32], 0, sizeof(sha256_context) - 32);
227 }
228
229 void sha256_hash_buffer(unsigned char *ib, int ile, unsigned char *ob, int ole)
230 {
231 sha256_context ctx;
232
233 if(ole < 1) return;
234 memset(ob, 0, ole);
235 if(ole > 32) ole = 32;
236 sha256_init(&ctx);
237 sha256_write(&ctx, ib, ile);
238 sha256_final(&ctx);
239 memcpy(ob, &ctx.sha_out[0], ole);
240 memset(&ctx, 0, sizeof(ctx));
241 }
242
243 #endif
244
245 #if defined(SHA512_NEEDED)
246 void sha512_init(sha512_context *ctx)
247 {
248 memcpy(&ctx->sha_H[0], &sha512_hashInit[0], sizeof(ctx->sha_H));
249 ctx->sha_blocks = 0;
250 ctx->sha_blocksMSB = 0;
251 ctx->sha_bufCnt = 0;
252 }
253 #endif
254
255 #if defined(SHA512_NEEDED) || defined(SHA384_NEEDED)
256 #undef S
257 #undef uSig0
258 #undef uSig1
259 #undef lSig0
260 #undef lSig1
261 #define S(x,y) (((y) >> (x)) | ((y) << (64 - (x))))
262 #define uSig0(x) ((S(28,(x))) ^ (S(34,(x))) ^ (S(39,(x))))
263 #define uSig1(x) ((S(14,(x))) ^ (S(18,(x))) ^ (S(41,(x))))
264 #define lSig0(x) ((S(1,(x))) ^ (S(8,(x))) ^ (R(7,(x))))
265 #define lSig1(x) ((S(19,(x))) ^ (S(61,(x))) ^ (R(6,(x))))
266
267 static void sha512_transform(sha512_context *ctx, const unsigned char *datap)
268 {
269 register int j;
270 u_int64_t a, b, c, d, e, f, g, h;
271 u_int64_t T1, T2, W[80], Wm2, Wm15;
272
273 /* read the data, big endian byte order */
274 j = 0;
275 do {
276 W[j] = (((u_int64_t)(datap[0]))<<56) | (((u_int64_t)(datap[1]))<<48) |
277 (((u_int64_t)(datap[2]))<<40) | (((u_int64_t)(datap[3]))<<32) |
278 (((u_int64_t)(datap[4]))<<24) | (((u_int64_t)(datap[5]))<<16) |
279 (((u_int64_t)(datap[6]))<<8 ) | ((u_int64_t)(datap[7]));
280 datap += 8;
281 } while(++j < 16);
282
283 /* initialize variables a...h */
284 a = ctx->sha_H[0];
285 b = ctx->sha_H[1];
286 c = ctx->sha_H[2];
287 d = ctx->sha_H[3];
288 e = ctx->sha_H[4];
289 f = ctx->sha_H[5];
290 g = ctx->sha_H[6];
291 h = ctx->sha_H[7];
292
293 /* apply compression function */
294 j = 0;
295 do {
296 if(j >= 16) {
297 Wm2 = W[j - 2];
298 Wm15 = W[j - 15];
299 W[j] = lSig1(Wm2) + W[j - 7] + lSig0(Wm15) + W[j - 16];
300 }
301 T1 = h + uSig1(e) + Ch(e,f,g) + sha512_K[j] + W[j];
302 T2 = uSig0(a) + Maj(a,b,c);
303 h = g; g = f; f = e;
304 e = d + T1;
305 d = c; c = b; b = a;
306 a = T1 + T2;
307 } while(++j < 80);
308
309 /* compute intermediate hash value */
310 ctx->sha_H[0] += a;
311 ctx->sha_H[1] += b;
312 ctx->sha_H[2] += c;
313 ctx->sha_H[3] += d;
314 ctx->sha_H[4] += e;
315 ctx->sha_H[5] += f;
316 ctx->sha_H[6] += g;
317 ctx->sha_H[7] += h;
318
319 ctx->sha_blocks++;
320 if(!ctx->sha_blocks) ctx->sha_blocksMSB++;
321 }
322
323 void sha512_write(sha512_context *ctx, const unsigned char *datap, int length)
324 {
325 while(length > 0) {
326 if(!ctx->sha_bufCnt) {
327 while(length >= sizeof(ctx->sha_out)) {
328 sha512_transform(ctx, datap);
329 datap += sizeof(ctx->sha_out);
330 length -= sizeof(ctx->sha_out);
331 }
332 if(!length) return;
333 }
334 ctx->sha_out[ctx->sha_bufCnt] = *datap++;
335 length--;
336 if(++ctx->sha_bufCnt == sizeof(ctx->sha_out)) {
337 sha512_transform(ctx, &ctx->sha_out[0]);
338 ctx->sha_bufCnt = 0;
339 }
340 }
341 }
342
343 void sha512_final(sha512_context *ctx)
344 {
345 register int j;
346 u_int64_t bitLength, bitLengthMSB;
347 u_int64_t i;
348 unsigned char padByte, *datap;
349
350 bitLength = (ctx->sha_blocks << 10) | (ctx->sha_bufCnt << 3);
351 bitLengthMSB = (ctx->sha_blocksMSB << 10) | (ctx->sha_blocks >> 54);
352 padByte = 0x80;
353 sha512_write(ctx, &padByte, 1);
354
355 /* pad extra space with zeroes */
356 padByte = 0;
357 while(ctx->sha_bufCnt != 112) {
358 sha512_write(ctx, &padByte, 1);
359 }
360
361 /* write bit length, big endian byte order */
362 ctx->sha_out[112] = bitLengthMSB >> 56;
363 ctx->sha_out[113] = bitLengthMSB >> 48;
364 ctx->sha_out[114] = bitLengthMSB >> 40;
365 ctx->sha_out[115] = bitLengthMSB >> 32;
366 ctx->sha_out[116] = bitLengthMSB >> 24;
367 ctx->sha_out[117] = bitLengthMSB >> 16;
368 ctx->sha_out[118] = bitLengthMSB >> 8;
369 ctx->sha_out[119] = bitLengthMSB;
370 ctx->sha_out[120] = bitLength >> 56;
371 ctx->sha_out[121] = bitLength >> 48;
372 ctx->sha_out[122] = bitLength >> 40;
373 ctx->sha_out[123] = bitLength >> 32;
374 ctx->sha_out[124] = bitLength >> 24;
375 ctx->sha_out[125] = bitLength >> 16;
376 ctx->sha_out[126] = bitLength >> 8;
377 ctx->sha_out[127] = bitLength;
378 sha512_transform(ctx, &ctx->sha_out[0]);
379
380 /* return results in ctx->sha_out[0...63] */
381 datap = &ctx->sha_out[0];
382 j = 0;
383 do {
384 i = ctx->sha_H[j];
385 datap[0] = i >> 56;
386 datap[1] = i >> 48;
387 datap[2] = i >> 40;
388 datap[3] = i >> 32;
389 datap[4] = i >> 24;
390 datap[5] = i >> 16;
391 datap[6] = i >> 8;
392 datap[7] = i;
393 datap += 8;
394 } while(++j < 8);
395
396 /* clear sensitive information */
397 memset(&ctx->sha_out[64], 0, sizeof(sha512_context) - 64);
398 }
399
400 void sha512_hash_buffer(unsigned char *ib, int ile, unsigned char *ob, int ole)
401 {
402 sha512_context ctx;
403
404 if(ole < 1) return;
405 memset(ob, 0, ole);
406 if(ole > 64) ole = 64;
407 sha512_init(&ctx);
408 sha512_write(&ctx, ib, ile);
409 sha512_final(&ctx);
410 memcpy(ob, &ctx.sha_out[0], ole);
411 memset(&ctx, 0, sizeof(ctx));
412 }
413 #endif
414
415 #if defined(SHA384_NEEDED)
416 void sha384_init(sha512_context *ctx)
417 {
418 memcpy(&ctx->sha_H[0], &sha384_hashInit[0], sizeof(ctx->sha_H));
419 ctx->sha_blocks = 0;
420 ctx->sha_blocksMSB = 0;
421 ctx->sha_bufCnt = 0;
422 }
423
424 void sha384_hash_buffer(unsigned char *ib, int ile, unsigned char *ob, int ole)
425 {
426 sha512_context ctx;
427
428 if(ole < 1) return;
429 memset(ob, 0, ole);
430 if(ole > 48) ole = 48;
431 sha384_init(&ctx);
432 sha512_write(&ctx, ib, ile);
433 sha512_final(&ctx);
434 memcpy(ob, &ctx.sha_out[0], ole);
435 memset(&ctx, 0, sizeof(ctx));
436 }
437 #endif