Set thread specific SA on bus for each enumerated IKE_SA
[strongswan.git] / src / libcharon / sa / ike_sa_manager.c
1 /*
2 * Copyright (C) 2005-2011 Martin Willi
3 * Copyright (C) 2011 revosec AG
4 * Copyright (C) 2008 Tobias Brunner
5 * Copyright (C) 2005 Jan Hutter
6 * Hochschule fuer Technik Rapperswil
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 */
18
19 #include <string.h>
20
21 #include "ike_sa_manager.h"
22
23 #include <daemon.h>
24 #include <sa/ike_sa_id.h>
25 #include <bus/bus.h>
26 #include <threading/condvar.h>
27 #include <threading/mutex.h>
28 #include <threading/rwlock.h>
29 #include <utils/linked_list.h>
30 #include <crypto/hashers/hasher.h>
31
32 /* the default size of the hash table (MUST be a power of 2) */
33 #define DEFAULT_HASHTABLE_SIZE 1
34
35 /* the maximum size of the hash table (MUST be a power of 2) */
36 #define MAX_HASHTABLE_SIZE (1 << 30)
37
38 /* the default number of segments (MUST be a power of 2) */
39 #define DEFAULT_SEGMENT_COUNT 1
40
41 typedef struct entry_t entry_t;
42
43 /**
44 * An entry in the linked list, contains IKE_SA, locking and lookup data.
45 */
46 struct entry_t {
47
48 /**
49 * Number of threads waiting for this ike_sa_t object.
50 */
51 int waiting_threads;
52
53 /**
54 * Condvar where threads can wait until ike_sa_t object is free for use again.
55 */
56 condvar_t *condvar;
57
58 /**
59 * Is this ike_sa currently checked out?
60 */
61 bool checked_out;
62
63 /**
64 * Does this SA drives out new threads?
65 */
66 bool driveout_new_threads;
67
68 /**
69 * Does this SA drives out waiting threads?
70 */
71 bool driveout_waiting_threads;
72
73 /**
74 * Identification of an IKE_SA (SPIs).
75 */
76 ike_sa_id_t *ike_sa_id;
77
78 /**
79 * The contained ike_sa_t object.
80 */
81 ike_sa_t *ike_sa;
82
83 /**
84 * hash of the IKE_SA_INIT message, used to detect retransmissions
85 */
86 chunk_t init_hash;
87
88 /**
89 * remote host address, required for DoS detection and duplicate
90 * checking (host with same my_id and other_id is *not* considered
91 * a duplicate if the address family differs)
92 */
93 host_t *other;
94
95 /**
96 * As responder: Is this SA half-open?
97 */
98 bool half_open;
99
100 /**
101 * own identity, required for duplicate checking
102 */
103 identification_t *my_id;
104
105 /**
106 * remote identity, required for duplicate checking
107 */
108 identification_t *other_id;
109
110 /**
111 * message ID currently processing, if any
112 */
113 u_int32_t message_id;
114 };
115
116 /**
117 * Implementation of entry_t.destroy.
118 */
119 static status_t entry_destroy(entry_t *this)
120 {
121 /* also destroy IKE SA */
122 this->ike_sa->destroy(this->ike_sa);
123 this->ike_sa_id->destroy(this->ike_sa_id);
124 chunk_free(&this->init_hash);
125 DESTROY_IF(this->other);
126 DESTROY_IF(this->my_id);
127 DESTROY_IF(this->other_id);
128 this->condvar->destroy(this->condvar);
129 free(this);
130 return SUCCESS;
131 }
132
133 /**
134 * Creates a new entry for the ike_sa_t list.
135 */
136 static entry_t *entry_create()
137 {
138 entry_t *this = malloc_thing(entry_t);
139
140 this->waiting_threads = 0;
141 this->condvar = condvar_create(CONDVAR_TYPE_DEFAULT);
142
143 /* we set checkout flag when we really give it out */
144 this->checked_out = FALSE;
145 this->driveout_new_threads = FALSE;
146 this->driveout_waiting_threads = FALSE;
147 this->message_id = -1;
148 this->init_hash = chunk_empty;
149 this->other = NULL;
150 this->half_open = FALSE;
151 this->my_id = NULL;
152 this->other_id = NULL;
153 this->ike_sa_id = NULL;
154 this->ike_sa = NULL;
155
156 return this;
157 }
158
159 /**
160 * Function that matches entry_t objects by initiator SPI and the hash of the
161 * IKE_SA_INIT message.
162 */
163 static bool entry_match_by_hash(entry_t *entry, ike_sa_id_t *id, chunk_t *hash)
164 {
165 return id->get_responder_spi(id) == 0 &&
166 id->get_initiator_spi(id) == entry->ike_sa_id->get_initiator_spi(entry->ike_sa_id) &&
167 chunk_equals(*hash, entry->init_hash);
168 }
169
170 /**
171 * Function that matches entry_t objects by ike_sa_id_t.
172 */
173 static bool entry_match_by_id(entry_t *entry, ike_sa_id_t *id)
174 {
175 if (id->equals(id, entry->ike_sa_id))
176 {
177 return TRUE;
178 }
179 if ((id->get_responder_spi(id) == 0 ||
180 entry->ike_sa_id->get_responder_spi(entry->ike_sa_id) == 0) &&
181 id->get_initiator_spi(id) == entry->ike_sa_id->get_initiator_spi(entry->ike_sa_id))
182 {
183 /* this is TRUE for IKE_SAs that we initiated but have not yet received a response */
184 return TRUE;
185 }
186 return FALSE;
187 }
188
189 /**
190 * Function that matches entry_t objects by ike_sa_t pointers.
191 */
192 static bool entry_match_by_sa(entry_t *entry, ike_sa_t *ike_sa)
193 {
194 return entry->ike_sa == ike_sa;
195 }
196
197 /**
198 * Hash function for ike_sa_id_t objects.
199 */
200 static u_int ike_sa_id_hash(ike_sa_id_t *ike_sa_id)
201 {
202 /* we always use initiator spi as key */
203 return ike_sa_id->get_initiator_spi(ike_sa_id);
204 }
205
206 typedef struct half_open_t half_open_t;
207
208 /**
209 * Struct to manage half-open IKE_SAs per peer.
210 */
211 struct half_open_t {
212 /** chunk of remote host address */
213 chunk_t other;
214
215 /** the number of half-open IKE_SAs with that host */
216 u_int count;
217 };
218
219 /**
220 * Destroys a half_open_t object.
221 */
222 static void half_open_destroy(half_open_t *this)
223 {
224 chunk_free(&this->other);
225 free(this);
226 }
227
228 /**
229 * Function that matches half_open_t objects by the given IP address chunk.
230 */
231 static bool half_open_match(half_open_t *half_open, chunk_t *addr)
232 {
233 return chunk_equals(*addr, half_open->other);
234 }
235
236 typedef struct connected_peers_t connected_peers_t;
237
238 struct connected_peers_t {
239 /** own identity */
240 identification_t *my_id;
241
242 /** remote identity */
243 identification_t *other_id;
244
245 /** ip address family of peer */
246 int family;
247
248 /** list of ike_sa_id_t objects of IKE_SAs between the two identities */
249 linked_list_t *sas;
250 };
251
252 static void connected_peers_destroy(connected_peers_t *this)
253 {
254 this->my_id->destroy(this->my_id);
255 this->other_id->destroy(this->other_id);
256 this->sas->destroy(this->sas);
257 free(this);
258 }
259
260 /**
261 * Function that matches connected_peers_t objects by the given ids.
262 */
263 static bool connected_peers_match(connected_peers_t *connected_peers,
264 identification_t *my_id, identification_t *other_id,
265 uintptr_t family)
266 {
267 return my_id->equals(my_id, connected_peers->my_id) &&
268 other_id->equals(other_id, connected_peers->other_id) &&
269 (!family || family == connected_peers->family);
270 }
271
272 typedef struct segment_t segment_t;
273
274 /**
275 * Struct to manage segments of the hash table.
276 */
277 struct segment_t {
278 /** mutex to access a segment exclusively */
279 mutex_t *mutex;
280
281 /** the number of entries in this segment */
282 u_int count;
283 };
284
285 typedef struct shareable_segment_t shareable_segment_t;
286
287 /**
288 * Struct to manage segments of the "half-open" and "connected peers" hash tables.
289 */
290 struct shareable_segment_t {
291 /** rwlock to access a segment non-/exclusively */
292 rwlock_t *lock;
293
294 /** the number of entries in this segment - in case of the "half-open table"
295 * it's the sum of all half_open_t.count in a segment. */
296 u_int count;
297 };
298
299 typedef struct private_ike_sa_manager_t private_ike_sa_manager_t;
300
301 /**
302 * Additional private members of ike_sa_manager_t.
303 */
304 struct private_ike_sa_manager_t {
305 /**
306 * Public interface of ike_sa_manager_t.
307 */
308 ike_sa_manager_t public;
309
310 /**
311 * Hash table with entries for the ike_sa_t objects.
312 */
313 linked_list_t **ike_sa_table;
314
315 /**
316 * The size of the hash table.
317 */
318 u_int table_size;
319
320 /**
321 * Mask to map the hashes to table rows.
322 */
323 u_int table_mask;
324
325 /**
326 * Segments of the hash table.
327 */
328 segment_t *segments;
329
330 /**
331 * The number of segments.
332 */
333 u_int segment_count;
334
335 /**
336 * Mask to map a table row to a segment.
337 */
338 u_int segment_mask;
339
340 /**
341 * Hash table with half_open_t objects.
342 */
343 linked_list_t **half_open_table;
344
345 /**
346 * Segments of the "half-open" hash table.
347 */
348 shareable_segment_t *half_open_segments;
349
350 /**
351 * Hash table with connected_peers_t objects.
352 */
353 linked_list_t **connected_peers_table;
354
355 /**
356 * Segments of the "connected peers" hash table.
357 */
358 shareable_segment_t *connected_peers_segments;
359
360 /**
361 * RNG to get random SPIs for our side
362 */
363 rng_t *rng;
364
365 /**
366 * SHA1 hasher for IKE_SA_INIT retransmit detection
367 */
368 hasher_t *hasher;
369
370 /**
371 * reuse existing IKE_SAs in checkout_by_config
372 */
373 bool reuse_ikesa;
374 };
375
376 /**
377 * Acquire a lock to access the segment of the table row with the given index.
378 * It also works with the segment index directly.
379 */
380 static void lock_single_segment(private_ike_sa_manager_t *this, u_int index)
381 {
382 mutex_t *lock = this->segments[index & this->segment_mask].mutex;
383
384 lock->lock(lock);
385 }
386
387 /**
388 * Release the lock required to access the segment of the table row with the given index.
389 * It also works with the segment index directly.
390 */
391 static void unlock_single_segment(private_ike_sa_manager_t *this, u_int index)
392 {
393 mutex_t *lock = this->segments[index & this->segment_mask].mutex;
394
395 lock->unlock(lock);
396 }
397
398 /**
399 * Lock all segments
400 */
401 static void lock_all_segments(private_ike_sa_manager_t *this)
402 {
403 u_int i;
404
405 for (i = 0; i < this->segment_count; i++)
406 {
407 this->segments[i].mutex->lock(this->segments[i].mutex);
408 }
409 }
410
411 /**
412 * Unlock all segments
413 */
414 static void unlock_all_segments(private_ike_sa_manager_t *this)
415 {
416 u_int i;
417
418 for (i = 0; i < this->segment_count; i++)
419 {
420 this->segments[i].mutex->unlock(this->segments[i].mutex);
421 }
422 }
423
424 typedef struct private_enumerator_t private_enumerator_t;
425
426 /**
427 * hash table enumerator implementation
428 */
429 struct private_enumerator_t {
430
431 /**
432 * implements enumerator interface
433 */
434 enumerator_t enumerator;
435
436 /**
437 * associated ike_sa_manager_t
438 */
439 private_ike_sa_manager_t *manager;
440
441 /**
442 * current segment index
443 */
444 u_int segment;
445
446 /**
447 * currently enumerating entry
448 */
449 entry_t *entry;
450
451 /**
452 * current table row index
453 */
454 u_int row;
455
456 /**
457 * enumerator for the current table row
458 */
459 enumerator_t *current;
460 };
461
462 METHOD(enumerator_t, enumerate, bool,
463 private_enumerator_t *this, entry_t **entry, u_int *segment)
464 {
465 if (this->entry)
466 {
467 this->entry->condvar->signal(this->entry->condvar);
468 this->entry = NULL;
469 }
470 while (this->segment < this->manager->segment_count)
471 {
472 while (this->row < this->manager->table_size)
473 {
474 if (this->current)
475 {
476 entry_t *item;
477
478 if (this->current->enumerate(this->current, &item))
479 {
480 *entry = this->entry = item;
481 *segment = this->segment;
482 return TRUE;
483 }
484 this->current->destroy(this->current);
485 this->current = NULL;
486 unlock_single_segment(this->manager, this->segment);
487 }
488 else
489 {
490 linked_list_t *list;
491
492 lock_single_segment(this->manager, this->segment);
493 if ((list = this->manager->ike_sa_table[this->row]) != NULL &&
494 list->get_count(list))
495 {
496 this->current = list->create_enumerator(list);
497 continue;
498 }
499 unlock_single_segment(this->manager, this->segment);
500 }
501 this->row += this->manager->segment_count;
502 }
503 this->segment++;
504 this->row = this->segment;
505 }
506 return FALSE;
507 }
508
509 METHOD(enumerator_t, enumerator_destroy, void,
510 private_enumerator_t *this)
511 {
512 if (this->entry)
513 {
514 this->entry->condvar->signal(this->entry->condvar);
515 }
516 if (this->current)
517 {
518 this->current->destroy(this->current);
519 unlock_single_segment(this->manager, this->segment);
520 }
521 free(this);
522 }
523
524 /**
525 * Creates an enumerator to enumerate the entries in the hash table.
526 */
527 static enumerator_t* create_table_enumerator(private_ike_sa_manager_t *this)
528 {
529 private_enumerator_t *enumerator;
530
531 INIT(enumerator,
532 .enumerator = {
533 .enumerate = (void*)_enumerate,
534 .destroy = _enumerator_destroy,
535 },
536 .manager = this,
537 );
538 return &enumerator->enumerator;
539 }
540
541 /**
542 * Put an entry into the hash table.
543 * Note: The caller has to unlock the returned segment.
544 */
545 static u_int put_entry(private_ike_sa_manager_t *this, entry_t *entry)
546 {
547 linked_list_t *list;
548 u_int row, segment;
549
550 row = ike_sa_id_hash(entry->ike_sa_id) & this->table_mask;
551 segment = row & this->segment_mask;
552
553 lock_single_segment(this, segment);
554 list = this->ike_sa_table[row];
555 if (!list)
556 {
557 list = this->ike_sa_table[row] = linked_list_create();
558 }
559 list->insert_last(list, entry);
560 this->segments[segment].count++;
561 return segment;
562 }
563
564 /**
565 * Remove an entry from the hash table.
566 * Note: The caller MUST have a lock on the segment of this entry.
567 */
568 static void remove_entry(private_ike_sa_manager_t *this, entry_t *entry)
569 {
570 linked_list_t *list;
571 u_int row, segment;
572
573 row = ike_sa_id_hash(entry->ike_sa_id) & this->table_mask;
574 segment = row & this->segment_mask;
575 list = this->ike_sa_table[row];
576 if (list)
577 {
578 entry_t *current;
579 enumerator_t *enumerator;
580
581 enumerator = list->create_enumerator(list);
582 while (enumerator->enumerate(enumerator, &current))
583 {
584 if (current == entry)
585 {
586 list->remove_at(list, enumerator);
587 this->segments[segment].count--;
588 break;
589 }
590 }
591 enumerator->destroy(enumerator);
592 }
593 }
594
595 /**
596 * Remove the entry at the current enumerator position.
597 */
598 static void remove_entry_at(private_enumerator_t *this)
599 {
600 this->entry = NULL;
601 if (this->current)
602 {
603 linked_list_t *list = this->manager->ike_sa_table[this->row];
604 list->remove_at(list, this->current);
605 this->manager->segments[this->segment].count--;
606 }
607 }
608
609 /**
610 * Find an entry using the provided match function to compare the entries for
611 * equality.
612 */
613 static status_t get_entry_by_match_function(private_ike_sa_manager_t *this,
614 ike_sa_id_t *ike_sa_id, entry_t **entry, u_int *segment,
615 linked_list_match_t match, void *p1, void *p2)
616 {
617 entry_t *current;
618 linked_list_t *list;
619 u_int row, seg;
620
621 row = ike_sa_id_hash(ike_sa_id) & this->table_mask;
622 seg = row & this->segment_mask;
623
624 lock_single_segment(this, seg);
625 list = this->ike_sa_table[row];
626 if (list)
627 {
628 if (list->find_first(list, match, (void**)&current, p1, p2) == SUCCESS)
629 {
630 *entry = current;
631 *segment = seg;
632 /* the locked segment has to be unlocked by the caller */
633 return SUCCESS;
634 }
635 }
636 unlock_single_segment(this, seg);
637 return NOT_FOUND;
638 }
639
640 /**
641 * Find an entry by ike_sa_id_t.
642 * Note: On SUCCESS, the caller has to unlock the segment.
643 */
644 static status_t get_entry_by_id(private_ike_sa_manager_t *this,
645 ike_sa_id_t *ike_sa_id, entry_t **entry, u_int *segment)
646 {
647 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
648 (linked_list_match_t)entry_match_by_id, ike_sa_id, NULL);
649 }
650
651 /**
652 * Find an entry by initiator SPI and IKE_SA_INIT hash.
653 * Note: On SUCCESS, the caller has to unlock the segment.
654 */
655 static status_t get_entry_by_hash(private_ike_sa_manager_t *this,
656 ike_sa_id_t *ike_sa_id, chunk_t hash, entry_t **entry, u_int *segment)
657 {
658 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
659 (linked_list_match_t)entry_match_by_hash, ike_sa_id, &hash);
660 }
661
662 /**
663 * Find an entry by IKE_SA pointer.
664 * Note: On SUCCESS, the caller has to unlock the segment.
665 */
666 static status_t get_entry_by_sa(private_ike_sa_manager_t *this,
667 ike_sa_id_t *ike_sa_id, ike_sa_t *ike_sa, entry_t **entry, u_int *segment)
668 {
669 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
670 (linked_list_match_t)entry_match_by_sa, ike_sa, NULL);
671 }
672
673 /**
674 * Wait until no other thread is using an IKE_SA, return FALSE if entry not
675 * acquirable.
676 */
677 static bool wait_for_entry(private_ike_sa_manager_t *this, entry_t *entry,
678 u_int segment)
679 {
680 if (entry->driveout_new_threads)
681 {
682 /* we are not allowed to get this */
683 return FALSE;
684 }
685 while (entry->checked_out && !entry->driveout_waiting_threads)
686 {
687 /* so wait until we can get it for us.
688 * we register us as waiting. */
689 entry->waiting_threads++;
690 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
691 entry->waiting_threads--;
692 }
693 /* hm, a deletion request forbids us to get this SA, get next one */
694 if (entry->driveout_waiting_threads)
695 {
696 /* we must signal here, others may be waiting on it, too */
697 entry->condvar->signal(entry->condvar);
698 return FALSE;
699 }
700 return TRUE;
701 }
702
703 /**
704 * Put a half-open SA into the hash table.
705 */
706 static void put_half_open(private_ike_sa_manager_t *this, entry_t *entry)
707 {
708 half_open_t *half_open = NULL;
709 linked_list_t *list;
710 chunk_t addr;
711 u_int row, segment;
712 rwlock_t *lock;
713
714 addr = entry->other->get_address(entry->other);
715 row = chunk_hash(addr) & this->table_mask;
716 segment = row & this->segment_mask;
717 lock = this->half_open_segments[segment].lock;
718 lock->write_lock(lock);
719 list = this->half_open_table[row];
720 if (list)
721 {
722 half_open_t *current;
723
724 if (list->find_first(list, (linked_list_match_t)half_open_match,
725 (void**)&current, &addr) == SUCCESS)
726 {
727 half_open = current;
728 half_open->count++;
729 this->half_open_segments[segment].count++;
730 }
731 }
732 else
733 {
734 list = this->half_open_table[row] = linked_list_create();
735 }
736
737 if (!half_open)
738 {
739 INIT(half_open,
740 .other = chunk_clone(addr),
741 .count = 1,
742 );
743 list->insert_last(list, half_open);
744 this->half_open_segments[segment].count++;
745 }
746 lock->unlock(lock);
747 }
748
749 /**
750 * Remove a half-open SA from the hash table.
751 */
752 static void remove_half_open(private_ike_sa_manager_t *this, entry_t *entry)
753 {
754 linked_list_t *list;
755 chunk_t addr;
756 u_int row, segment;
757 rwlock_t *lock;
758
759 addr = entry->other->get_address(entry->other);
760 row = chunk_hash(addr) & this->table_mask;
761 segment = row & this->segment_mask;
762 lock = this->half_open_segments[segment].lock;
763 lock->write_lock(lock);
764 list = this->half_open_table[row];
765 if (list)
766 {
767 half_open_t *current;
768 enumerator_t *enumerator;
769
770 enumerator = list->create_enumerator(list);
771 while (enumerator->enumerate(enumerator, &current))
772 {
773 if (half_open_match(current, &addr))
774 {
775 if (--current->count == 0)
776 {
777 list->remove_at(list, enumerator);
778 half_open_destroy(current);
779 }
780 this->half_open_segments[segment].count--;
781 break;
782 }
783 }
784 enumerator->destroy(enumerator);
785 }
786 lock->unlock(lock);
787 }
788
789 /**
790 * Put an SA between two peers into the hash table.
791 */
792 static void put_connected_peers(private_ike_sa_manager_t *this, entry_t *entry)
793 {
794 connected_peers_t *connected_peers = NULL;
795 chunk_t my_id, other_id;
796 linked_list_t *list;
797 u_int row, segment;
798 rwlock_t *lock;
799
800 my_id = entry->my_id->get_encoding(entry->my_id);
801 other_id = entry->other_id->get_encoding(entry->other_id);
802 row = chunk_hash_inc(other_id, chunk_hash(my_id)) & this->table_mask;
803 segment = row & this->segment_mask;
804 lock = this->connected_peers_segments[segment].lock;
805 lock->write_lock(lock);
806 list = this->connected_peers_table[row];
807 if (list)
808 {
809 connected_peers_t *current;
810
811 if (list->find_first(list, (linked_list_match_t)connected_peers_match,
812 (void**)&current, entry->my_id, entry->other_id,
813 (uintptr_t)entry->other->get_family(entry->other)) == SUCCESS)
814 {
815 connected_peers = current;
816 if (connected_peers->sas->find_first(connected_peers->sas,
817 (linked_list_match_t)entry->ike_sa_id->equals,
818 NULL, entry->ike_sa_id) == SUCCESS)
819 {
820 lock->unlock(lock);
821 return;
822 }
823 }
824 }
825 else
826 {
827 list = this->connected_peers_table[row] = linked_list_create();
828 }
829
830 if (!connected_peers)
831 {
832 INIT(connected_peers,
833 .my_id = entry->my_id->clone(entry->my_id),
834 .other_id = entry->other_id->clone(entry->other_id),
835 .family = entry->other->get_family(entry->other),
836 .sas = linked_list_create(),
837 );
838 list->insert_last(list, connected_peers);
839 }
840 connected_peers->sas->insert_last(connected_peers->sas,
841 entry->ike_sa_id->clone(entry->ike_sa_id));
842 this->connected_peers_segments[segment].count++;
843 lock->unlock(lock);
844 }
845
846 /**
847 * Remove an SA between two peers from the hash table.
848 */
849 static void remove_connected_peers(private_ike_sa_manager_t *this, entry_t *entry)
850 {
851 chunk_t my_id, other_id;
852 linked_list_t *list;
853 u_int row, segment;
854 rwlock_t *lock;
855
856 my_id = entry->my_id->get_encoding(entry->my_id);
857 other_id = entry->other_id->get_encoding(entry->other_id);
858 row = chunk_hash_inc(other_id, chunk_hash(my_id)) & this->table_mask;
859 segment = row & this->segment_mask;
860
861 lock = this->connected_peers_segments[segment].lock;
862 lock->write_lock(lock);
863 list = this->connected_peers_table[row];
864 if (list)
865 {
866 connected_peers_t *current;
867 enumerator_t *enumerator;
868
869 enumerator = list->create_enumerator(list);
870 while (enumerator->enumerate(enumerator, &current))
871 {
872 if (connected_peers_match(current, entry->my_id, entry->other_id,
873 (uintptr_t)entry->other->get_family(entry->other)))
874 {
875 ike_sa_id_t *ike_sa_id;
876 enumerator_t *inner;
877
878 inner = current->sas->create_enumerator(current->sas);
879 while (inner->enumerate(inner, &ike_sa_id))
880 {
881 if (ike_sa_id->equals(ike_sa_id, entry->ike_sa_id))
882 {
883 current->sas->remove_at(current->sas, inner);
884 ike_sa_id->destroy(ike_sa_id);
885 this->connected_peers_segments[segment].count--;
886 break;
887 }
888 }
889 inner->destroy(inner);
890 if (current->sas->get_count(current->sas) == 0)
891 {
892 list->remove_at(list, enumerator);
893 connected_peers_destroy(current);
894 }
895 break;
896 }
897 }
898 enumerator->destroy(enumerator);
899 }
900 lock->unlock(lock);
901 }
902
903 /**
904 * Get a random SPI for new IKE_SAs
905 */
906 static u_int64_t get_spi(private_ike_sa_manager_t *this)
907 {
908 u_int64_t spi = 0;
909
910 if (this->rng)
911 {
912 this->rng->get_bytes(this->rng, sizeof(spi), (u_int8_t*)&spi);
913 }
914 return spi;
915 }
916
917 METHOD(ike_sa_manager_t, checkout, ike_sa_t*,
918 private_ike_sa_manager_t *this, ike_sa_id_t *ike_sa_id)
919 {
920 ike_sa_t *ike_sa = NULL;
921 entry_t *entry;
922 u_int segment;
923
924 DBG2(DBG_MGR, "checkout IKE_SA");
925
926 if (get_entry_by_id(this, ike_sa_id, &entry, &segment) == SUCCESS)
927 {
928 if (wait_for_entry(this, entry, segment))
929 {
930 entry->checked_out = TRUE;
931 ike_sa = entry->ike_sa;
932 DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
933 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
934 }
935 unlock_single_segment(this, segment);
936 }
937 charon->bus->set_sa(charon->bus, ike_sa);
938 return ike_sa;
939 }
940
941 METHOD(ike_sa_manager_t, checkout_new, ike_sa_t*,
942 private_ike_sa_manager_t* this, ike_version_t version, bool initiator)
943 {
944 ike_sa_id_t *ike_sa_id;
945 ike_sa_t *ike_sa;
946
947 if (initiator)
948 {
949 ike_sa_id = ike_sa_id_create(get_spi(this), 0, TRUE);
950 }
951 else
952 {
953 ike_sa_id = ike_sa_id_create(0, get_spi(this), FALSE);
954 }
955 ike_sa = ike_sa_create(ike_sa_id, initiator, version);
956 ike_sa_id->destroy(ike_sa_id);
957
958 if (ike_sa)
959 {
960 DBG2(DBG_MGR, "created IKE_SA %s[%u]", ike_sa->get_name(ike_sa),
961 ike_sa->get_unique_id(ike_sa));
962 }
963 return ike_sa;
964 }
965
966 METHOD(ike_sa_manager_t, checkout_by_message, ike_sa_t*,
967 private_ike_sa_manager_t* this, message_t *message)
968 {
969 u_int segment;
970 entry_t *entry;
971 ike_sa_t *ike_sa = NULL;
972 ike_sa_id_t *id;
973 ike_version_t ike_version;
974 bool is_init = FALSE;
975
976 id = message->get_ike_sa_id(message);
977 id = id->clone(id);
978 id->switch_initiator(id);
979
980 DBG2(DBG_MGR, "checkout IKE_SA by message");
981
982 if (id->get_responder_spi(id) == 0)
983 {
984 if (message->get_major_version(message) == IKEV2_MAJOR_VERSION)
985 {
986 if (message->get_exchange_type(message) == IKE_SA_INIT &&
987 message->get_request(message))
988 {
989 ike_version = IKEV2;
990 is_init = TRUE;
991 }
992 }
993 else
994 {
995 if (message->get_exchange_type(message) == ID_PROT ||
996 message->get_exchange_type(message) == AGGRESSIVE)
997 {
998 ike_version = IKEV1;
999 is_init = TRUE;
1000 if (id->is_initiator(id))
1001 { /* not set in IKEv1, switch back before applying to new SA */
1002 id->switch_initiator(id);
1003 }
1004 }
1005 }
1006 }
1007
1008 if (is_init && this->hasher)
1009 {
1010 /* First request. Check for an IKE_SA with such a message hash. */
1011 chunk_t hash;
1012
1013 this->hasher->allocate_hash(this->hasher,
1014 message->get_packet_data(message), &hash);
1015
1016 if (get_entry_by_hash(this, id, hash, &entry, &segment) == SUCCESS)
1017 {
1018 if (message->get_exchange_type(message) == IKE_SA_INIT &&
1019 entry->message_id == 0)
1020 {
1021 unlock_single_segment(this, segment);
1022 chunk_free(&hash);
1023 id->destroy(id);
1024 DBG1(DBG_MGR, "ignoring IKE_SA_INIT, already processing");
1025 return NULL;
1026 }
1027 else if (wait_for_entry(this, entry, segment))
1028 {
1029 entry->checked_out = TRUE;
1030 entry->message_id = message->get_message_id(message);
1031 ike_sa = entry->ike_sa;
1032 DBG2(DBG_MGR, "IKE_SA %s[%u] checked out by hash",
1033 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1034 chunk_free(&hash);
1035 }
1036 unlock_single_segment(this, segment);
1037 }
1038
1039 if (ike_sa == NULL)
1040 {
1041 /* no IKE_SA found, create a new one */
1042 id->set_responder_spi(id, get_spi(this));
1043 ike_sa = ike_sa_create(id, FALSE, ike_version);
1044 if (ike_sa)
1045 {
1046 entry = entry_create();
1047 /* a new SA checked out by message is a responder SA */
1048 entry->ike_sa = ike_sa;
1049 entry->ike_sa_id = id->clone(id);
1050
1051 segment = put_entry(this, entry);
1052 entry->checked_out = TRUE;
1053 unlock_single_segment(this, segment);
1054
1055 entry->message_id = message->get_message_id(message);
1056 entry->init_hash = hash;
1057
1058 DBG2(DBG_MGR, "created IKE_SA %s[%u]",
1059 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1060 }
1061 }
1062 if (ike_sa == NULL)
1063 {
1064 chunk_free(&hash);
1065 DBG1(DBG_MGR, "ignoring message, no such IKE_SA");
1066 }
1067 id->destroy(id);
1068 charon->bus->set_sa(charon->bus, ike_sa);
1069 return ike_sa;
1070 }
1071
1072 if (get_entry_by_id(this, id, &entry, &segment) == SUCCESS)
1073 {
1074 /* only check out in IKEv2 if we are not already processing it */
1075 if (message->get_request(message) &&
1076 message->get_message_id(message) == entry->message_id)
1077 {
1078 DBG1(DBG_MGR, "ignoring request with ID %u, already processing",
1079 entry->message_id);
1080 }
1081 else if (wait_for_entry(this, entry, segment))
1082 {
1083 ike_sa_id_t *ike_id;
1084
1085 ike_id = entry->ike_sa->get_id(entry->ike_sa);
1086 entry->checked_out = TRUE;
1087 entry->message_id = message->get_message_id(message);
1088 if (ike_id->get_responder_spi(ike_id) == 0)
1089 {
1090 ike_id->set_responder_spi(ike_id, id->get_responder_spi(id));
1091 }
1092 ike_sa = entry->ike_sa;
1093 DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
1094 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1095 }
1096 unlock_single_segment(this, segment);
1097 }
1098 id->destroy(id);
1099 charon->bus->set_sa(charon->bus, ike_sa);
1100 return ike_sa;
1101 }
1102
1103 METHOD(ike_sa_manager_t, checkout_by_config, ike_sa_t*,
1104 private_ike_sa_manager_t *this, peer_cfg_t *peer_cfg)
1105 {
1106 enumerator_t *enumerator;
1107 entry_t *entry;
1108 ike_sa_t *ike_sa = NULL;
1109 peer_cfg_t *current_peer;
1110 ike_cfg_t *current_ike;
1111 u_int segment;
1112
1113 DBG2(DBG_MGR, "checkout IKE_SA by config");
1114
1115 if (!this->reuse_ikesa)
1116 { /* IKE_SA reuse disable by config */
1117 ike_sa = checkout_new(this, peer_cfg->get_ike_version(peer_cfg), TRUE);
1118 charon->bus->set_sa(charon->bus, ike_sa);
1119 return ike_sa;
1120 }
1121
1122 enumerator = create_table_enumerator(this);
1123 while (enumerator->enumerate(enumerator, &entry, &segment))
1124 {
1125 if (!wait_for_entry(this, entry, segment))
1126 {
1127 continue;
1128 }
1129 if (entry->ike_sa->get_state(entry->ike_sa) == IKE_DELETING)
1130 { /* skip IKE_SAs which are not usable */
1131 continue;
1132 }
1133
1134 current_peer = entry->ike_sa->get_peer_cfg(entry->ike_sa);
1135 if (current_peer && current_peer->equals(current_peer, peer_cfg))
1136 {
1137 current_ike = current_peer->get_ike_cfg(current_peer);
1138 if (current_ike->equals(current_ike, peer_cfg->get_ike_cfg(peer_cfg)))
1139 {
1140 entry->checked_out = TRUE;
1141 ike_sa = entry->ike_sa;
1142 DBG2(DBG_MGR, "found existing IKE_SA %u with a '%s' config",
1143 ike_sa->get_unique_id(ike_sa),
1144 current_peer->get_name(current_peer));
1145 break;
1146 }
1147 }
1148 }
1149 enumerator->destroy(enumerator);
1150
1151 if (!ike_sa)
1152 { /* no IKE_SA using such a config, hand out a new */
1153 ike_sa = checkout_new(this, peer_cfg->get_ike_version(peer_cfg), TRUE);
1154 }
1155 charon->bus->set_sa(charon->bus, ike_sa);
1156 return ike_sa;
1157 }
1158
1159 METHOD(ike_sa_manager_t, checkout_by_id, ike_sa_t*,
1160 private_ike_sa_manager_t *this, u_int32_t id, bool child)
1161 {
1162 enumerator_t *enumerator, *children;
1163 entry_t *entry;
1164 ike_sa_t *ike_sa = NULL;
1165 child_sa_t *child_sa;
1166 u_int segment;
1167
1168 DBG2(DBG_MGR, "checkout IKE_SA by ID");
1169
1170 enumerator = create_table_enumerator(this);
1171 while (enumerator->enumerate(enumerator, &entry, &segment))
1172 {
1173 if (wait_for_entry(this, entry, segment))
1174 {
1175 /* look for a child with such a reqid ... */
1176 if (child)
1177 {
1178 children = entry->ike_sa->create_child_sa_enumerator(entry->ike_sa);
1179 while (children->enumerate(children, (void**)&child_sa))
1180 {
1181 if (child_sa->get_reqid(child_sa) == id)
1182 {
1183 ike_sa = entry->ike_sa;
1184 break;
1185 }
1186 }
1187 children->destroy(children);
1188 }
1189 else /* ... or for a IKE_SA with such a unique id */
1190 {
1191 if (entry->ike_sa->get_unique_id(entry->ike_sa) == id)
1192 {
1193 ike_sa = entry->ike_sa;
1194 }
1195 }
1196 /* got one, return */
1197 if (ike_sa)
1198 {
1199 entry->checked_out = TRUE;
1200 DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
1201 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1202 break;
1203 }
1204 }
1205 }
1206 enumerator->destroy(enumerator);
1207
1208 charon->bus->set_sa(charon->bus, ike_sa);
1209 return ike_sa;
1210 }
1211
1212 METHOD(ike_sa_manager_t, checkout_by_name, ike_sa_t*,
1213 private_ike_sa_manager_t *this, char *name, bool child)
1214 {
1215 enumerator_t *enumerator, *children;
1216 entry_t *entry;
1217 ike_sa_t *ike_sa = NULL;
1218 child_sa_t *child_sa;
1219 u_int segment;
1220
1221 enumerator = create_table_enumerator(this);
1222 while (enumerator->enumerate(enumerator, &entry, &segment))
1223 {
1224 if (wait_for_entry(this, entry, segment))
1225 {
1226 /* look for a child with such a policy name ... */
1227 if (child)
1228 {
1229 children = entry->ike_sa->create_child_sa_enumerator(entry->ike_sa);
1230 while (children->enumerate(children, (void**)&child_sa))
1231 {
1232 if (streq(child_sa->get_name(child_sa), name))
1233 {
1234 ike_sa = entry->ike_sa;
1235 break;
1236 }
1237 }
1238 children->destroy(children);
1239 }
1240 else /* ... or for a IKE_SA with such a connection name */
1241 {
1242 if (streq(entry->ike_sa->get_name(entry->ike_sa), name))
1243 {
1244 ike_sa = entry->ike_sa;
1245 }
1246 }
1247 /* got one, return */
1248 if (ike_sa)
1249 {
1250 entry->checked_out = TRUE;
1251 DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
1252 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1253 break;
1254 }
1255 }
1256 }
1257 enumerator->destroy(enumerator);
1258
1259 charon->bus->set_sa(charon->bus, ike_sa);
1260 return ike_sa;
1261 }
1262
1263 /**
1264 * enumerator filter function, waiting variant
1265 */
1266 static bool enumerator_filter_wait(private_ike_sa_manager_t *this,
1267 entry_t **in, ike_sa_t **out, u_int *segment)
1268 {
1269 if (wait_for_entry(this, *in, *segment))
1270 {
1271 *out = (*in)->ike_sa;
1272 charon->bus->set_sa(charon->bus, *out);
1273 return TRUE;
1274 }
1275 return FALSE;
1276 }
1277
1278 /**
1279 * enumerator filter function, skipping variant
1280 */
1281 static bool enumerator_filter_skip(private_ike_sa_manager_t *this,
1282 entry_t **in, ike_sa_t **out, u_int *segment)
1283 {
1284 if (!(*in)->driveout_new_threads &&
1285 !(*in)->driveout_waiting_threads &&
1286 !(*in)->checked_out)
1287 {
1288 *out = (*in)->ike_sa;
1289 charon->bus->set_sa(charon->bus, *out);
1290 return TRUE;
1291 }
1292 return FALSE;
1293 }
1294
1295 /**
1296 * Reset threads SA after enumeration
1297 */
1298 static void reset_sa(void *data)
1299 {
1300 charon->bus->set_sa(charon->bus, NULL);
1301 }
1302
1303 METHOD(ike_sa_manager_t, create_enumerator, enumerator_t*,
1304 private_ike_sa_manager_t* this, bool wait)
1305 {
1306 return enumerator_create_filter(create_table_enumerator(this),
1307 wait ? (void*)enumerator_filter_wait : (void*)enumerator_filter_skip,
1308 this, reset_sa);
1309 }
1310
1311 METHOD(ike_sa_manager_t, checkin, void,
1312 private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
1313 {
1314 /* to check the SA back in, we look for the pointer of the ike_sa
1315 * in all entries.
1316 * The lookup is done by initiator SPI, so even if the SPI has changed (e.g.
1317 * on reception of a IKE_SA_INIT response) the lookup will work but
1318 * updating of the SPI MAY be necessary...
1319 */
1320 entry_t *entry;
1321 ike_sa_id_t *ike_sa_id;
1322 host_t *other;
1323 identification_t *my_id, *other_id;
1324 u_int segment;
1325
1326 ike_sa_id = ike_sa->get_id(ike_sa);
1327 my_id = ike_sa->get_my_id(ike_sa);
1328 other_id = ike_sa->get_other_id(ike_sa);
1329 other = ike_sa->get_other_host(ike_sa);
1330
1331 DBG2(DBG_MGR, "checkin IKE_SA %s[%u]", ike_sa->get_name(ike_sa),
1332 ike_sa->get_unique_id(ike_sa));
1333
1334 /* look for the entry */
1335 if (get_entry_by_sa(this, ike_sa_id, ike_sa, &entry, &segment) == SUCCESS)
1336 {
1337 /* ike_sa_id must be updated */
1338 entry->ike_sa_id->replace_values(entry->ike_sa_id, ike_sa->get_id(ike_sa));
1339 /* signal waiting threads */
1340 entry->checked_out = FALSE;
1341 entry->message_id = -1;
1342 /* check if this SA is half-open */
1343 if (entry->half_open && ike_sa->get_state(ike_sa) != IKE_CONNECTING)
1344 {
1345 /* not half open anymore */
1346 entry->half_open = FALSE;
1347 remove_half_open(this, entry);
1348 }
1349 else if (entry->half_open && !other->ip_equals(other, entry->other))
1350 {
1351 /* the other host's IP has changed, we must update the hash table */
1352 remove_half_open(this, entry);
1353 DESTROY_IF(entry->other);
1354 entry->other = other->clone(other);
1355 put_half_open(this, entry);
1356 }
1357 else if (!entry->half_open &&
1358 !entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
1359 ike_sa->get_state(ike_sa) == IKE_CONNECTING)
1360 {
1361 /* this is a new half-open SA */
1362 entry->half_open = TRUE;
1363 entry->other = other->clone(other);
1364 put_half_open(this, entry);
1365 }
1366 DBG2(DBG_MGR, "check-in of IKE_SA successful.");
1367 entry->condvar->signal(entry->condvar);
1368 }
1369 else
1370 {
1371 entry = entry_create();
1372 entry->ike_sa_id = ike_sa_id->clone(ike_sa_id);
1373 entry->ike_sa = ike_sa;
1374 segment = put_entry(this, entry);
1375 }
1376
1377 /* apply identities for duplicate test */
1378 if (ike_sa->get_state(ike_sa) == IKE_ESTABLISHED &&
1379 entry->my_id == NULL && entry->other_id == NULL)
1380 {
1381 if (ike_sa->get_version(ike_sa) == IKEV1)
1382 {
1383 /* If authenticated and received INITIAL_CONTACT,
1384 * delete any existing IKE_SAs with that peer. */
1385 if (ike_sa->has_condition(ike_sa, COND_INIT_CONTACT_SEEN))
1386 {
1387 this->public.check_uniqueness(&this->public, ike_sa, TRUE);
1388 ike_sa->set_condition(ike_sa, COND_INIT_CONTACT_SEEN, FALSE);
1389 }
1390 }
1391
1392 entry->my_id = my_id->clone(my_id);
1393 entry->other_id = other_id->clone(other_id);
1394 if (!entry->other)
1395 {
1396 entry->other = other->clone(other);
1397 }
1398 put_connected_peers(this, entry);
1399 }
1400
1401 unlock_single_segment(this, segment);
1402
1403 charon->bus->set_sa(charon->bus, NULL);
1404 }
1405
1406 METHOD(ike_sa_manager_t, checkin_and_destroy, void,
1407 private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
1408 {
1409 /* deletion is a bit complex, we must ensure that no thread is waiting for
1410 * this SA.
1411 * We take this SA from the table, and start signaling while threads
1412 * are in the condvar.
1413 */
1414 entry_t *entry;
1415 ike_sa_id_t *ike_sa_id;
1416 u_int segment;
1417
1418 ike_sa_id = ike_sa->get_id(ike_sa);
1419
1420 DBG2(DBG_MGR, "checkin and destroy IKE_SA %s[%u]", ike_sa->get_name(ike_sa),
1421 ike_sa->get_unique_id(ike_sa));
1422
1423 if (get_entry_by_sa(this, ike_sa_id, ike_sa, &entry, &segment) == SUCCESS)
1424 {
1425 /* drive out waiting threads, as we are in hurry */
1426 entry->driveout_waiting_threads = TRUE;
1427 /* mark it, so no new threads can get this entry */
1428 entry->driveout_new_threads = TRUE;
1429 /* wait until all workers have done their work */
1430 while (entry->waiting_threads)
1431 {
1432 /* wake up all */
1433 entry->condvar->broadcast(entry->condvar);
1434 /* they will wake us again when their work is done */
1435 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
1436 }
1437 remove_entry(this, entry);
1438 unlock_single_segment(this, segment);
1439
1440 if (entry->half_open)
1441 {
1442 remove_half_open(this, entry);
1443 }
1444 if (entry->my_id && entry->other_id)
1445 {
1446 remove_connected_peers(this, entry);
1447 }
1448
1449 entry_destroy(entry);
1450
1451 DBG2(DBG_MGR, "check-in and destroy of IKE_SA successful");
1452 }
1453 else
1454 {
1455 DBG1(DBG_MGR, "tried to check-in and delete nonexisting IKE_SA");
1456 ike_sa->destroy(ike_sa);
1457 }
1458 charon->bus->set_sa(charon->bus, NULL);
1459 }
1460
1461 /**
1462 * Cleanup function for create_id_enumerator
1463 */
1464 static void id_enumerator_cleanup(linked_list_t *ids)
1465 {
1466 ids->destroy_offset(ids, offsetof(ike_sa_id_t, destroy));
1467 }
1468
1469 METHOD(ike_sa_manager_t, create_id_enumerator, enumerator_t*,
1470 private_ike_sa_manager_t *this, identification_t *me,
1471 identification_t *other, int family)
1472 {
1473 linked_list_t *list, *ids = NULL;
1474 connected_peers_t *current;
1475 u_int row, segment;
1476 rwlock_t *lock;
1477
1478 row = chunk_hash_inc(other->get_encoding(other),
1479 chunk_hash(me->get_encoding(me))) & this->table_mask;
1480 segment = row & this->segment_mask;
1481
1482 lock = this->connected_peers_segments[segment & this->segment_mask].lock;
1483 lock->read_lock(lock);
1484 list = this->connected_peers_table[row];
1485 if (list)
1486 {
1487 if (list->find_first(list, (linked_list_match_t)connected_peers_match,
1488 (void**)&current, me, other, (uintptr_t)family) == SUCCESS)
1489 {
1490 ids = current->sas->clone_offset(current->sas,
1491 offsetof(ike_sa_id_t, clone));
1492 }
1493 }
1494 lock->unlock(lock);
1495
1496 if (!ids)
1497 {
1498 return enumerator_create_empty();
1499 }
1500 return enumerator_create_cleaner(ids->create_enumerator(ids),
1501 (void*)id_enumerator_cleanup, ids);
1502 }
1503
1504 METHOD(ike_sa_manager_t, check_uniqueness, bool,
1505 private_ike_sa_manager_t *this, ike_sa_t *ike_sa, bool force_replace)
1506 {
1507 bool cancel = FALSE;
1508 peer_cfg_t *peer_cfg;
1509 unique_policy_t policy;
1510 enumerator_t *enumerator;
1511 ike_sa_id_t *id = NULL;
1512 identification_t *me, *other;
1513 host_t *other_host;
1514
1515 peer_cfg = ike_sa->get_peer_cfg(ike_sa);
1516 policy = peer_cfg->get_unique_policy(peer_cfg);
1517 if (policy == UNIQUE_NO && !force_replace)
1518 {
1519 return FALSE;
1520 }
1521 me = ike_sa->get_my_id(ike_sa);
1522 other = ike_sa->get_other_id(ike_sa);
1523 other_host = ike_sa->get_other_host(ike_sa);
1524
1525 enumerator = create_id_enumerator(this, me, other,
1526 other_host->get_family(other_host));
1527 while (enumerator->enumerate(enumerator, &id))
1528 {
1529 status_t status = SUCCESS;
1530 ike_sa_t *duplicate;
1531
1532 duplicate = checkout(this, id);
1533 if (!duplicate)
1534 {
1535 continue;
1536 }
1537 if (force_replace)
1538 {
1539 DBG1(DBG_IKE, "destroying duplicate IKE_SA for peer '%Y', "
1540 "received INITIAL_CONTACT", other);
1541 checkin_and_destroy(this, duplicate);
1542 continue;
1543 }
1544 peer_cfg = duplicate->get_peer_cfg(duplicate);
1545 if (peer_cfg && peer_cfg->equals(peer_cfg, ike_sa->get_peer_cfg(ike_sa)))
1546 {
1547 switch (duplicate->get_state(duplicate))
1548 {
1549 case IKE_ESTABLISHED:
1550 case IKE_REKEYING:
1551 switch (policy)
1552 {
1553 case UNIQUE_REPLACE:
1554 DBG1(DBG_IKE, "deleting duplicate IKE_SA for peer "
1555 "'%Y' due to uniqueness policy", other);
1556 status = duplicate->delete(duplicate);
1557 break;
1558 case UNIQUE_KEEP:
1559 cancel = TRUE;
1560 /* we keep the first IKE_SA and delete all
1561 * other duplicates that might exist */
1562 policy = UNIQUE_REPLACE;
1563 break;
1564 default:
1565 break;
1566 }
1567 break;
1568 default:
1569 break;
1570 }
1571 }
1572 if (status == DESTROY_ME)
1573 {
1574 checkin_and_destroy(this, duplicate);
1575 }
1576 else
1577 {
1578 checkin(this, duplicate);
1579 }
1580 }
1581 enumerator->destroy(enumerator);
1582 /* reset thread's current IKE_SA after checkin */
1583 charon->bus->set_sa(charon->bus, ike_sa);
1584 return cancel;
1585 }
1586
1587 METHOD(ike_sa_manager_t, has_contact, bool,
1588 private_ike_sa_manager_t *this, identification_t *me,
1589 identification_t *other, int family)
1590 {
1591 linked_list_t *list;
1592 u_int row, segment;
1593 rwlock_t *lock;
1594 bool found = FALSE;
1595
1596 row = chunk_hash_inc(other->get_encoding(other),
1597 chunk_hash(me->get_encoding(me))) & this->table_mask;
1598 segment = row & this->segment_mask;
1599 lock = this->connected_peers_segments[segment & this->segment_mask].lock;
1600 lock->read_lock(lock);
1601 list = this->connected_peers_table[row];
1602 if (list)
1603 {
1604 if (list->find_first(list, (linked_list_match_t)connected_peers_match,
1605 NULL, me, other, family) == SUCCESS)
1606 {
1607 found = TRUE;
1608 }
1609 }
1610 lock->unlock(lock);
1611
1612 return found;
1613 }
1614
1615 METHOD(ike_sa_manager_t, get_count, u_int,
1616 private_ike_sa_manager_t *this)
1617 {
1618 u_int segment, count = 0;
1619 mutex_t *mutex;
1620
1621 for (segment = 0; segment < this->segment_count; segment++)
1622 {
1623 mutex = this->segments[segment & this->segment_mask].mutex;
1624 mutex->lock(mutex);
1625 count += this->segments[segment].count;
1626 mutex->unlock(mutex);
1627 }
1628 return count;
1629 }
1630
1631 METHOD(ike_sa_manager_t, get_half_open_count, u_int,
1632 private_ike_sa_manager_t *this, host_t *ip)
1633 {
1634 linked_list_t *list;
1635 u_int segment, row;
1636 rwlock_t *lock;
1637 chunk_t addr;
1638 u_int count = 0;
1639
1640 if (ip)
1641 {
1642 addr = ip->get_address(ip);
1643 row = chunk_hash(addr) & this->table_mask;
1644 segment = row & this->segment_mask;
1645 lock = this->half_open_segments[segment & this->segment_mask].lock;
1646 lock->read_lock(lock);
1647 if ((list = this->half_open_table[row]) != NULL)
1648 {
1649 half_open_t *current;
1650
1651 if (list->find_first(list, (linked_list_match_t)half_open_match,
1652 (void**)&current, &addr) == SUCCESS)
1653 {
1654 count = current->count;
1655 }
1656 }
1657 lock->unlock(lock);
1658 }
1659 else
1660 {
1661 for (segment = 0; segment < this->segment_count; segment++)
1662 {
1663 lock = this->half_open_segments[segment & this->segment_mask].lock;
1664 lock->read_lock(lock);
1665 count += this->half_open_segments[segment].count;
1666 lock->unlock(lock);
1667 }
1668 }
1669 return count;
1670 }
1671
1672 METHOD(ike_sa_manager_t, flush, void,
1673 private_ike_sa_manager_t *this)
1674 {
1675 /* destroy all list entries */
1676 enumerator_t *enumerator;
1677 entry_t *entry;
1678 u_int segment;
1679
1680 lock_all_segments(this);
1681 DBG2(DBG_MGR, "going to destroy IKE_SA manager and all managed IKE_SA's");
1682 /* Step 1: drive out all waiting threads */
1683 DBG2(DBG_MGR, "set driveout flags for all stored IKE_SA's");
1684 enumerator = create_table_enumerator(this);
1685 while (enumerator->enumerate(enumerator, &entry, &segment))
1686 {
1687 /* do not accept new threads, drive out waiting threads */
1688 entry->driveout_new_threads = TRUE;
1689 entry->driveout_waiting_threads = TRUE;
1690 }
1691 enumerator->destroy(enumerator);
1692 DBG2(DBG_MGR, "wait for all threads to leave IKE_SA's");
1693 /* Step 2: wait until all are gone */
1694 enumerator = create_table_enumerator(this);
1695 while (enumerator->enumerate(enumerator, &entry, &segment))
1696 {
1697 while (entry->waiting_threads || entry->checked_out)
1698 {
1699 /* wake up all */
1700 entry->condvar->broadcast(entry->condvar);
1701 /* go sleeping until they are gone */
1702 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
1703 }
1704 }
1705 enumerator->destroy(enumerator);
1706 DBG2(DBG_MGR, "delete all IKE_SA's");
1707 /* Step 3: initiate deletion of all IKE_SAs */
1708 enumerator = create_table_enumerator(this);
1709 while (enumerator->enumerate(enumerator, &entry, &segment))
1710 {
1711 charon->bus->set_sa(charon->bus, entry->ike_sa);
1712 if (entry->ike_sa->get_version(entry->ike_sa) == IKEV2)
1713 { /* as the delete never gets processed, fire down events */
1714 switch (entry->ike_sa->get_state(entry->ike_sa))
1715 {
1716 case IKE_ESTABLISHED:
1717 case IKE_REKEYING:
1718 case IKE_DELETING:
1719 charon->bus->ike_updown(charon->bus, entry->ike_sa, FALSE);
1720 break;
1721 default:
1722 break;
1723 }
1724 }
1725 entry->ike_sa->delete(entry->ike_sa);
1726 }
1727 enumerator->destroy(enumerator);
1728
1729 DBG2(DBG_MGR, "destroy all entries");
1730 /* Step 4: destroy all entries */
1731 enumerator = create_table_enumerator(this);
1732 while (enumerator->enumerate(enumerator, &entry, &segment))
1733 {
1734 charon->bus->set_sa(charon->bus, entry->ike_sa);
1735 if (entry->half_open)
1736 {
1737 remove_half_open(this, entry);
1738 }
1739 if (entry->my_id && entry->other_id)
1740 {
1741 remove_connected_peers(this, entry);
1742 }
1743 remove_entry_at((private_enumerator_t*)enumerator);
1744 entry_destroy(entry);
1745 }
1746 enumerator->destroy(enumerator);
1747 charon->bus->set_sa(charon->bus, NULL);
1748 unlock_all_segments(this);
1749
1750 this->rng->destroy(this->rng);
1751 this->rng = NULL;
1752 this->hasher->destroy(this->hasher);
1753 this->hasher = NULL;
1754 }
1755
1756 METHOD(ike_sa_manager_t, destroy, void,
1757 private_ike_sa_manager_t *this)
1758 {
1759 u_int i;
1760
1761 for (i = 0; i < this->table_size; i++)
1762 {
1763 DESTROY_IF(this->ike_sa_table[i]);
1764 DESTROY_IF(this->half_open_table[i]);
1765 DESTROY_IF(this->connected_peers_table[i]);
1766 }
1767 free(this->ike_sa_table);
1768 free(this->half_open_table);
1769 free(this->connected_peers_table);
1770 for (i = 0; i < this->segment_count; i++)
1771 {
1772 this->segments[i].mutex->destroy(this->segments[i].mutex);
1773 this->half_open_segments[i].lock->destroy(this->half_open_segments[i].lock);
1774 this->connected_peers_segments[i].lock->destroy(this->connected_peers_segments[i].lock);
1775 }
1776 free(this->segments);
1777 free(this->half_open_segments);
1778 free(this->connected_peers_segments);
1779
1780 free(this);
1781 }
1782
1783 /**
1784 * This function returns the next-highest power of two for the given number.
1785 * The algorithm works by setting all bits on the right-hand side of the most
1786 * significant 1 to 1 and then increments the whole number so it rolls over
1787 * to the nearest power of two. Note: returns 0 for n == 0
1788 */
1789 static u_int get_nearest_powerof2(u_int n)
1790 {
1791 u_int i;
1792
1793 --n;
1794 for (i = 1; i < sizeof(u_int) * 8; i <<= 1)
1795 {
1796 n |= n >> i;
1797 }
1798 return ++n;
1799 }
1800
1801 /*
1802 * Described in header.
1803 */
1804 ike_sa_manager_t *ike_sa_manager_create()
1805 {
1806 private_ike_sa_manager_t *this;
1807 u_int i;
1808
1809 INIT(this,
1810 .public = {
1811 .checkout = _checkout,
1812 .checkout_new = _checkout_new,
1813 .checkout_by_message = _checkout_by_message,
1814 .checkout_by_config = _checkout_by_config,
1815 .checkout_by_id = _checkout_by_id,
1816 .checkout_by_name = _checkout_by_name,
1817 .check_uniqueness = _check_uniqueness,
1818 .has_contact = _has_contact,
1819 .create_enumerator = _create_enumerator,
1820 .create_id_enumerator = _create_id_enumerator,
1821 .checkin = _checkin,
1822 .checkin_and_destroy = _checkin_and_destroy,
1823 .get_count = _get_count,
1824 .get_half_open_count = _get_half_open_count,
1825 .flush = _flush,
1826 .destroy = _destroy,
1827 },
1828 );
1829
1830 this->hasher = lib->crypto->create_hasher(lib->crypto, HASH_PREFERRED);
1831 if (this->hasher == NULL)
1832 {
1833 DBG1(DBG_MGR, "manager initialization failed, no hasher supported");
1834 free(this);
1835 return NULL;
1836 }
1837 this->rng = lib->crypto->create_rng(lib->crypto, RNG_WEAK);
1838 if (this->rng == NULL)
1839 {
1840 DBG1(DBG_MGR, "manager initialization failed, no RNG supported");
1841 this->hasher->destroy(this->hasher);
1842 free(this);
1843 return NULL;
1844 }
1845
1846 this->table_size = get_nearest_powerof2(lib->settings->get_int(lib->settings,
1847 "charon.ikesa_table_size", DEFAULT_HASHTABLE_SIZE));
1848 this->table_size = max(1, min(this->table_size, MAX_HASHTABLE_SIZE));
1849 this->table_mask = this->table_size - 1;
1850
1851 this->segment_count = get_nearest_powerof2(lib->settings->get_int(lib->settings,
1852 "charon.ikesa_table_segments", DEFAULT_SEGMENT_COUNT));
1853 this->segment_count = max(1, min(this->segment_count, this->table_size));
1854 this->segment_mask = this->segment_count - 1;
1855 this->ike_sa_table = calloc(this->table_size, sizeof(linked_list_t*));
1856
1857 this->segments = (segment_t*)calloc(this->segment_count, sizeof(segment_t));
1858 for (i = 0; i < this->segment_count; i++)
1859 {
1860 this->segments[i].mutex = mutex_create(MUTEX_TYPE_RECURSIVE);
1861 this->segments[i].count = 0;
1862 }
1863
1864 /* we use the same table parameters for the table to track half-open SAs */
1865 this->half_open_table = calloc(this->table_size, sizeof(linked_list_t*));
1866 this->half_open_segments = calloc(this->segment_count, sizeof(shareable_segment_t));
1867 for (i = 0; i < this->segment_count; i++)
1868 {
1869 this->half_open_segments[i].lock = rwlock_create(RWLOCK_TYPE_DEFAULT);
1870 this->half_open_segments[i].count = 0;
1871 }
1872
1873 /* also for the hash table used for duplicate tests */
1874 this->connected_peers_table = calloc(this->table_size, sizeof(linked_list_t*));
1875 this->connected_peers_segments = calloc(this->segment_count, sizeof(shareable_segment_t));
1876 for (i = 0; i < this->segment_count; i++)
1877 {
1878 this->connected_peers_segments[i].lock = rwlock_create(RWLOCK_TYPE_DEFAULT);
1879 this->connected_peers_segments[i].count = 0;
1880 }
1881
1882 this->reuse_ikesa = lib->settings->get_bool(lib->settings,
1883 "charon.reuse_ikesa", TRUE);
1884 return &this->public;
1885 }