Moving charon to libcharon.
[strongswan.git] / src / libcharon / sa / ike_sa_manager.c
1 /*
2 * Copyright (C) 2008 Tobias Brunner
3 * Copyright (C) 2005-2008 Martin Willi
4 * Copyright (C) 2005 Jan Hutter
5 * Hochschule fuer Technik Rapperswil
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2 of the License, or (at your
10 * option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 * for more details.
16 */
17
18 #include <string.h>
19
20 #include "ike_sa_manager.h"
21
22 #include <daemon.h>
23 #include <sa/ike_sa_id.h>
24 #include <bus/bus.h>
25 #include <threading/condvar.h>
26 #include <threading/mutex.h>
27 #include <threading/rwlock.h>
28 #include <utils/linked_list.h>
29 #include <crypto/hashers/hasher.h>
30
31 /* the default size of the hash table (MUST be a power of 2) */
32 #define DEFAULT_HASHTABLE_SIZE 1
33
34 /* the maximum size of the hash table (MUST be a power of 2) */
35 #define MAX_HASHTABLE_SIZE (1 << 30)
36
37 /* the default number of segments (MUST be a power of 2) */
38 #define DEFAULT_SEGMENT_COUNT 1
39
40 typedef struct entry_t entry_t;
41
42 /**
43 * An entry in the linked list, contains IKE_SA, locking and lookup data.
44 */
45 struct entry_t {
46
47 /**
48 * Number of threads waiting for this ike_sa_t object.
49 */
50 int waiting_threads;
51
52 /**
53 * Condvar where threads can wait until ike_sa_t object is free for use again.
54 */
55 condvar_t *condvar;
56
57 /**
58 * Is this ike_sa currently checked out?
59 */
60 bool checked_out;
61
62 /**
63 * Does this SA drives out new threads?
64 */
65 bool driveout_new_threads;
66
67 /**
68 * Does this SA drives out waiting threads?
69 */
70 bool driveout_waiting_threads;
71
72 /**
73 * Identification of an IKE_SA (SPIs).
74 */
75 ike_sa_id_t *ike_sa_id;
76
77 /**
78 * The contained ike_sa_t object.
79 */
80 ike_sa_t *ike_sa;
81
82 /**
83 * hash of the IKE_SA_INIT message, used to detect retransmissions
84 */
85 chunk_t init_hash;
86
87 /**
88 * remote host address, required for DoS detection
89 */
90 host_t *other;
91
92 /**
93 * As responder: Is this SA half-open?
94 */
95 bool half_open;
96
97 /**
98 * own identity, required for duplicate checking
99 */
100 identification_t *my_id;
101
102 /**
103 * remote identity, required for duplicate checking
104 */
105 identification_t *other_id;
106
107 /**
108 * message ID currently processing, if any
109 */
110 u_int32_t message_id;
111 };
112
113 /**
114 * Implementation of entry_t.destroy.
115 */
116 static status_t entry_destroy(entry_t *this)
117 {
118 /* also destroy IKE SA */
119 this->ike_sa->destroy(this->ike_sa);
120 this->ike_sa_id->destroy(this->ike_sa_id);
121 chunk_free(&this->init_hash);
122 DESTROY_IF(this->other);
123 DESTROY_IF(this->my_id);
124 DESTROY_IF(this->other_id);
125 this->condvar->destroy(this->condvar);
126 free(this);
127 return SUCCESS;
128 }
129
130 /**
131 * Creates a new entry for the ike_sa_t list.
132 */
133 static entry_t *entry_create()
134 {
135 entry_t *this = malloc_thing(entry_t);
136
137 this->waiting_threads = 0;
138 this->condvar = condvar_create(CONDVAR_TYPE_DEFAULT);
139
140 /* we set checkout flag when we really give it out */
141 this->checked_out = FALSE;
142 this->driveout_new_threads = FALSE;
143 this->driveout_waiting_threads = FALSE;
144 this->message_id = -1;
145 this->init_hash = chunk_empty;
146 this->other = NULL;
147 this->half_open = FALSE;
148 this->my_id = NULL;
149 this->other_id = NULL;
150 this->ike_sa_id = NULL;
151 this->ike_sa = NULL;
152
153 return this;
154 }
155
156 /**
157 * Function that matches entry_t objects by initiator SPI and the hash of the
158 * IKE_SA_INIT message.
159 */
160 static bool entry_match_by_hash(entry_t *entry, ike_sa_id_t *id, chunk_t *hash)
161 {
162 return id->get_responder_spi(id) == 0 &&
163 id->is_initiator(id) == entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
164 id->get_initiator_spi(id) == entry->ike_sa_id->get_initiator_spi(entry->ike_sa_id) &&
165 chunk_equals(*hash, entry->init_hash);
166 }
167
168 /**
169 * Function that matches entry_t objects by ike_sa_id_t.
170 */
171 static bool entry_match_by_id(entry_t *entry, ike_sa_id_t *id)
172 {
173 if (id->equals(id, entry->ike_sa_id))
174 {
175 return TRUE;
176 }
177 if ((id->get_responder_spi(id) == 0 ||
178 entry->ike_sa_id->get_responder_spi(entry->ike_sa_id) == 0) &&
179 id->is_initiator(id) == entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
180 id->get_initiator_spi(id) == entry->ike_sa_id->get_initiator_spi(entry->ike_sa_id))
181 {
182 /* this is TRUE for IKE_SAs that we initiated but have not yet received a response */
183 return TRUE;
184 }
185 return FALSE;
186 }
187
188 /**
189 * Function that matches entry_t objects by ike_sa_t pointers.
190 */
191 static bool entry_match_by_sa(entry_t *entry, ike_sa_t *ike_sa)
192 {
193 return entry->ike_sa == ike_sa;
194 }
195
196 /**
197 * Hash function for ike_sa_id_t objects.
198 */
199 static u_int ike_sa_id_hash(ike_sa_id_t *ike_sa_id)
200 {
201 /* we always use initiator spi as key */
202 return ike_sa_id->get_initiator_spi(ike_sa_id);
203 }
204
205 typedef struct half_open_t half_open_t;
206
207 /**
208 * Struct to manage half-open IKE_SAs per peer.
209 */
210 struct half_open_t {
211 /** chunk of remote host address */
212 chunk_t other;
213
214 /** the number of half-open IKE_SAs with that host */
215 u_int count;
216 };
217
218 /**
219 * Destroys a half_open_t object.
220 */
221 static void half_open_destroy(half_open_t *this)
222 {
223 chunk_free(&this->other);
224 free(this);
225 }
226
227 /**
228 * Function that matches half_open_t objects by the given IP address chunk.
229 */
230 static bool half_open_match(half_open_t *half_open, chunk_t *addr)
231 {
232 return chunk_equals(*addr, half_open->other);
233 }
234
235 typedef struct connected_peers_t connected_peers_t;
236
237 struct connected_peers_t {
238 /** own identity */
239 identification_t *my_id;
240
241 /** remote identity */
242 identification_t *other_id;
243
244 /** list of ike_sa_id_t objects of IKE_SAs between the two identities */
245 linked_list_t *sas;
246 };
247
248 static void connected_peers_destroy(connected_peers_t *this)
249 {
250 this->my_id->destroy(this->my_id);
251 this->other_id->destroy(this->other_id);
252 this->sas->destroy(this->sas);
253 free(this);
254 }
255
256 /**
257 * Function that matches connected_peers_t objects by the given ids.
258 */
259 static bool connected_peers_match(connected_peers_t *connected_peers,
260 identification_t *my_id, identification_t *other_id)
261 {
262 return my_id->equals(my_id, connected_peers->my_id) &&
263 other_id->equals(other_id, connected_peers->other_id);
264 }
265
266 typedef struct segment_t segment_t;
267
268 /**
269 * Struct to manage segments of the hash table.
270 */
271 struct segment_t {
272 /** mutex to access a segment exclusively */
273 mutex_t *mutex;
274
275 /** the number of entries in this segment */
276 u_int count;
277 };
278
279 typedef struct shareable_segment_t shareable_segment_t;
280
281 /**
282 * Struct to manage segments of the "half-open" and "connected peers" hash tables.
283 */
284 struct shareable_segment_t {
285 /** rwlock to access a segment non-/exclusively */
286 rwlock_t *lock;
287
288 /** the number of entries in this segment - in case of the "half-open table"
289 * it's the sum of all half_open_t.count in a segment. */
290 u_int count;
291 };
292
293 typedef struct private_ike_sa_manager_t private_ike_sa_manager_t;
294
295 /**
296 * Additional private members of ike_sa_manager_t.
297 */
298 struct private_ike_sa_manager_t {
299 /**
300 * Public interface of ike_sa_manager_t.
301 */
302 ike_sa_manager_t public;
303
304 /**
305 * Hash table with entries for the ike_sa_t objects.
306 */
307 linked_list_t **ike_sa_table;
308
309 /**
310 * The size of the hash table.
311 */
312 u_int table_size;
313
314 /**
315 * Mask to map the hashes to table rows.
316 */
317 u_int table_mask;
318
319 /**
320 * Segments of the hash table.
321 */
322 segment_t *segments;
323
324 /**
325 * The number of segments.
326 */
327 u_int segment_count;
328
329 /**
330 * Mask to map a table row to a segment.
331 */
332 u_int segment_mask;
333
334 /**
335 * Hash table with half_open_t objects.
336 */
337 linked_list_t **half_open_table;
338
339 /**
340 * Segments of the "half-open" hash table.
341 */
342 shareable_segment_t *half_open_segments;
343
344 /**
345 * Hash table with connected_peers_t objects.
346 */
347 linked_list_t **connected_peers_table;
348
349 /**
350 * Segments of the "connected peers" hash table.
351 */
352 shareable_segment_t *connected_peers_segments;
353
354 /**
355 * RNG to get random SPIs for our side
356 */
357 rng_t *rng;
358
359 /**
360 * SHA1 hasher for IKE_SA_INIT retransmit detection
361 */
362 hasher_t *hasher;
363
364 /**
365 * reuse existing IKE_SAs in checkout_by_config
366 */
367 bool reuse_ikesa;
368 };
369
370 /**
371 * Acquire a lock to access the segment of the table row with the given index.
372 * It also works with the segment index directly.
373 */
374 static void lock_single_segment(private_ike_sa_manager_t *this, u_int index)
375 {
376 mutex_t *lock = this->segments[index & this->segment_mask].mutex;
377
378 lock->lock(lock);
379 }
380
381 /**
382 * Release the lock required to access the segment of the table row with the given index.
383 * It also works with the segment index directly.
384 */
385 static void unlock_single_segment(private_ike_sa_manager_t *this, u_int index)
386 {
387 mutex_t *lock = this->segments[index & this->segment_mask].mutex;
388
389 lock->unlock(lock);
390 }
391
392 /**
393 * Lock all segments
394 */
395 static void lock_all_segments(private_ike_sa_manager_t *this)
396 {
397 u_int i;
398
399 for (i = 0; i < this->segment_count; ++i)
400 {
401 this->segments[i].mutex->lock(this->segments[i].mutex);
402 }
403 }
404
405 /**
406 * Unlock all segments
407 */
408 static void unlock_all_segments(private_ike_sa_manager_t *this)
409 {
410 u_int i;
411
412 for (i = 0; i < this->segment_count; ++i)
413 {
414 this->segments[i].mutex->unlock(this->segments[i].mutex);
415 }
416 }
417
418 typedef struct private_enumerator_t private_enumerator_t;
419
420 /**
421 * hash table enumerator implementation
422 */
423 struct private_enumerator_t {
424
425 /**
426 * implements enumerator interface
427 */
428 enumerator_t enumerator;
429
430 /**
431 * associated ike_sa_manager_t
432 */
433 private_ike_sa_manager_t *manager;
434
435 /**
436 * current segment index
437 */
438 u_int segment;
439
440 /**
441 * currently enumerating entry
442 */
443 entry_t *entry;
444
445 /**
446 * current table row index
447 */
448 u_int row;
449
450 /**
451 * enumerator for the current table row
452 */
453 enumerator_t *current;
454 };
455
456 /**
457 * Implementation of private_enumerator_t.enumerator.enumerate.
458 */
459 static bool enumerate(private_enumerator_t *this, entry_t **entry, u_int *segment)
460 {
461 if (this->entry)
462 {
463 this->entry->condvar->signal(this->entry->condvar);
464 this->entry = NULL;
465 }
466 while (this->segment < this->manager->segment_count)
467 {
468 while (this->row < this->manager->table_size)
469 {
470 if (this->current)
471 {
472 entry_t *item;
473
474 if (this->current->enumerate(this->current, &item))
475 {
476 *entry = this->entry = item;
477 *segment = this->segment;
478 return TRUE;
479 }
480 this->current->destroy(this->current);
481 this->current = NULL;
482 unlock_single_segment(this->manager, this->segment);
483 }
484 else
485 {
486 linked_list_t *list;
487
488 lock_single_segment(this->manager, this->segment);
489 if ((list = this->manager->ike_sa_table[this->row]) != NULL &&
490 list->get_count(list))
491 {
492 this->current = list->create_enumerator(list);
493 continue;
494 }
495 unlock_single_segment(this->manager, this->segment);
496 }
497 this->row += this->manager->segment_count;
498 }
499 this->segment++;
500 this->row = this->segment;
501 }
502 return FALSE;
503 }
504
505 /**
506 * Implementation of private_enumerator_t.enumerator.destroy.
507 */
508 static void enumerator_destroy(private_enumerator_t *this)
509 {
510 if (this->entry)
511 {
512 this->entry->condvar->signal(this->entry->condvar);
513 }
514 if (this->current)
515 {
516 this->current->destroy(this->current);
517 unlock_single_segment(this->manager, this->segment);
518 }
519 free(this);
520 }
521
522 /**
523 * Creates an enumerator to enumerate the entries in the hash table.
524 */
525 static enumerator_t* create_table_enumerator(private_ike_sa_manager_t *this)
526 {
527 private_enumerator_t *enumerator = malloc_thing(private_enumerator_t);
528
529 enumerator->enumerator.enumerate = (void*)enumerate;
530 enumerator->enumerator.destroy = (void*)enumerator_destroy;
531 enumerator->manager = this;
532 enumerator->segment = 0;
533 enumerator->entry = NULL;
534 enumerator->row = 0;
535 enumerator->current = NULL;
536
537 return &enumerator->enumerator;
538 }
539
540 /**
541 * Put an entry into the hash table.
542 * Note: The caller has to unlock the returned segment.
543 */
544 static u_int put_entry(private_ike_sa_manager_t *this, entry_t *entry)
545 {
546 linked_list_t *list;
547 u_int row = ike_sa_id_hash(entry->ike_sa_id) & this->table_mask;
548 u_int segment = row & this->segment_mask;
549
550 lock_single_segment(this, segment);
551 if ((list = this->ike_sa_table[row]) == NULL)
552 {
553 list = this->ike_sa_table[row] = linked_list_create();
554 }
555 list->insert_last(list, entry);
556 this->segments[segment].count++;
557 return segment;
558 }
559
560 /**
561 * Remove an entry from the hash table.
562 * Note: The caller MUST have a lock on the segment of this entry.
563 */
564 static void remove_entry(private_ike_sa_manager_t *this, entry_t *entry)
565 {
566 linked_list_t *list;
567 u_int row = ike_sa_id_hash(entry->ike_sa_id) & this->table_mask;
568 u_int segment = row & this->segment_mask;
569
570 if ((list = this->ike_sa_table[row]) != NULL)
571 {
572 entry_t *current;
573
574 enumerator_t *enumerator = list->create_enumerator(list);
575 while (enumerator->enumerate(enumerator, &current))
576 {
577 if (current == entry)
578 {
579 list->remove_at(list, enumerator);
580 this->segments[segment].count--;
581 break;
582 }
583 }
584 enumerator->destroy(enumerator);
585 }
586 }
587
588 /**
589 * Remove the entry at the current enumerator position.
590 */
591 static void remove_entry_at(private_enumerator_t *this)
592 {
593 this->entry = NULL;
594 if (this->current)
595 {
596 linked_list_t *list = this->manager->ike_sa_table[this->row];
597 list->remove_at(list, this->current);
598 this->manager->segments[this->segment].count--;
599 }
600 }
601
602 /**
603 * Find an entry using the provided match function to compare the entries for
604 * equality.
605 */
606 static status_t get_entry_by_match_function(private_ike_sa_manager_t *this,
607 ike_sa_id_t *ike_sa_id, entry_t **entry, u_int *segment,
608 linked_list_match_t match, void *p1, void *p2)
609 {
610 entry_t *current;
611 linked_list_t *list;
612 u_int row = ike_sa_id_hash(ike_sa_id) & this->table_mask;
613 u_int seg = row & this->segment_mask;
614
615 lock_single_segment(this, seg);
616 if ((list = this->ike_sa_table[row]) != NULL)
617 {
618 if (list->find_first(list, match, (void**)&current, p1, p2) == SUCCESS)
619 {
620 *entry = current;
621 *segment = seg;
622 /* the locked segment has to be unlocked by the caller */
623 return SUCCESS;
624 }
625 }
626 unlock_single_segment(this, seg);
627 return NOT_FOUND;
628 }
629
630 /**
631 * Find an entry by ike_sa_id_t.
632 * Note: On SUCCESS, the caller has to unlock the segment.
633 */
634 static status_t get_entry_by_id(private_ike_sa_manager_t *this,
635 ike_sa_id_t *ike_sa_id, entry_t **entry, u_int *segment)
636 {
637 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
638 (linked_list_match_t)entry_match_by_id, ike_sa_id, NULL);
639 }
640
641 /**
642 * Find an entry by initiator SPI and IKE_SA_INIT hash.
643 * Note: On SUCCESS, the caller has to unlock the segment.
644 */
645 static status_t get_entry_by_hash(private_ike_sa_manager_t *this,
646 ike_sa_id_t *ike_sa_id, chunk_t hash, entry_t **entry, u_int *segment)
647 {
648 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
649 (linked_list_match_t)entry_match_by_hash, ike_sa_id, &hash);
650 }
651
652 /**
653 * Find an entry by IKE_SA pointer.
654 * Note: On SUCCESS, the caller has to unlock the segment.
655 */
656 static status_t get_entry_by_sa(private_ike_sa_manager_t *this,
657 ike_sa_id_t *ike_sa_id, ike_sa_t *ike_sa, entry_t **entry, u_int *segment)
658 {
659 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
660 (linked_list_match_t)entry_match_by_sa, ike_sa, NULL);
661 }
662
663 /**
664 * Wait until no other thread is using an IKE_SA, return FALSE if entry not
665 * acquirable.
666 */
667 static bool wait_for_entry(private_ike_sa_manager_t *this, entry_t *entry,
668 u_int segment)
669 {
670 if (entry->driveout_new_threads)
671 {
672 /* we are not allowed to get this */
673 return FALSE;
674 }
675 while (entry->checked_out && !entry->driveout_waiting_threads)
676 {
677 /* so wait until we can get it for us.
678 * we register us as waiting. */
679 entry->waiting_threads++;
680 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
681 entry->waiting_threads--;
682 }
683 /* hm, a deletion request forbids us to get this SA, get next one */
684 if (entry->driveout_waiting_threads)
685 {
686 /* we must signal here, others may be waiting on it, too */
687 entry->condvar->signal(entry->condvar);
688 return FALSE;
689 }
690 return TRUE;
691 }
692
693 /**
694 * Put a half-open SA into the hash table.
695 */
696 static void put_half_open(private_ike_sa_manager_t *this, entry_t *entry)
697 {
698 half_open_t *half_open = NULL;
699 linked_list_t *list;
700 chunk_t addr = entry->other->get_address(entry->other);
701 u_int row = chunk_hash(addr) & this->table_mask;
702 u_int segment = row & this->segment_mask;
703
704 rwlock_t *lock = this->half_open_segments[segment].lock;
705 lock->write_lock(lock);
706 if ((list = this->half_open_table[row]) == NULL)
707 {
708 list = this->half_open_table[row] = linked_list_create();
709 }
710 else
711 {
712 half_open_t *current;
713 if (list->find_first(list, (linked_list_match_t)half_open_match,
714 (void**)&current, &addr) == SUCCESS)
715 {
716 half_open = current;
717 half_open->count++;
718 this->half_open_segments[segment].count++;
719 }
720 }
721
722 if (!half_open)
723 {
724 half_open = malloc_thing(half_open_t);
725 half_open->other = chunk_clone(addr);
726 half_open->count = 1;
727 list->insert_last(list, half_open);
728 this->half_open_segments[segment].count++;
729 }
730 lock->unlock(lock);
731 }
732
733 /**
734 * Remove a half-open SA from the hash table.
735 */
736 static void remove_half_open(private_ike_sa_manager_t *this, entry_t *entry)
737 {
738 linked_list_t *list;
739 chunk_t addr = entry->other->get_address(entry->other);
740 u_int row = chunk_hash(addr) & this->table_mask;
741 u_int segment = row & this->segment_mask;
742
743 rwlock_t *lock = this->half_open_segments[segment].lock;
744 lock->write_lock(lock);
745 if ((list = this->half_open_table[row]) != NULL)
746 {
747 half_open_t *current;
748 enumerator_t *enumerator = list->create_enumerator(list);
749 while (enumerator->enumerate(enumerator, &current))
750 {
751 if (half_open_match(current, &addr))
752 {
753 if (--current->count == 0)
754 {
755 list->remove_at(list, enumerator);
756 half_open_destroy(current);
757 }
758 this->half_open_segments[segment].count--;
759 break;
760 }
761 }
762 enumerator->destroy(enumerator);
763 }
764 lock->unlock(lock);
765 }
766
767 /**
768 * Put an SA between two peers into the hash table.
769 */
770 static void put_connected_peers(private_ike_sa_manager_t *this, entry_t *entry)
771 {
772 linked_list_t *list;
773 connected_peers_t *connected_peers = NULL;
774 chunk_t my_id = entry->my_id->get_encoding(entry->my_id),
775 other_id = entry->other_id->get_encoding(entry->other_id);
776 u_int row = chunk_hash_inc(other_id, chunk_hash(my_id)) & this->table_mask;
777 u_int segment = row & this->segment_mask;
778
779 rwlock_t *lock = this->connected_peers_segments[segment].lock;
780 lock->write_lock(lock);
781 if ((list = this->connected_peers_table[row]) == NULL)
782 {
783 list = this->connected_peers_table[row] = linked_list_create();
784 }
785 else
786 {
787 connected_peers_t *current;
788 if (list->find_first(list, (linked_list_match_t)connected_peers_match,
789 (void**)&current, entry->my_id, entry->other_id) == SUCCESS)
790 {
791 connected_peers = current;
792 if (connected_peers->sas->find_first(connected_peers->sas,
793 (linked_list_match_t)entry->ike_sa_id->equals,
794 NULL, entry->ike_sa_id) == SUCCESS)
795 {
796 lock->unlock(lock);
797 return;
798 }
799 }
800 }
801
802 if (!connected_peers)
803 {
804 connected_peers = malloc_thing(connected_peers_t);
805 connected_peers->my_id = entry->my_id->clone(entry->my_id);
806 connected_peers->other_id = entry->other_id->clone(entry->other_id);
807 connected_peers->sas = linked_list_create();
808 list->insert_last(list, connected_peers);
809 }
810 connected_peers->sas->insert_last(connected_peers->sas,
811 entry->ike_sa_id->clone(entry->ike_sa_id));
812 this->connected_peers_segments[segment].count++;
813 lock->unlock(lock);
814 }
815
816 /**
817 * Remove an SA between two peers from the hash table.
818 */
819 static void remove_connected_peers(private_ike_sa_manager_t *this, entry_t *entry)
820 {
821 linked_list_t *list;
822 chunk_t my_id = entry->my_id->get_encoding(entry->my_id),
823 other_id = entry->other_id->get_encoding(entry->other_id);
824 u_int row = chunk_hash_inc(other_id, chunk_hash(my_id)) & this->table_mask;
825 u_int segment = row & this->segment_mask;
826
827 rwlock_t *lock = this->connected_peers_segments[segment].lock;
828 lock->write_lock(lock);
829 if ((list = this->connected_peers_table[row]) != NULL)
830 {
831 connected_peers_t *current;
832 enumerator_t *enumerator = list->create_enumerator(list);
833 while (enumerator->enumerate(enumerator, &current))
834 {
835 if (connected_peers_match(current, entry->my_id, entry->other_id))
836 {
837 ike_sa_id_t *ike_sa_id;
838 enumerator_t *inner = current->sas->create_enumerator(current->sas);
839 while (inner->enumerate(inner, &ike_sa_id))
840 {
841 if (ike_sa_id->equals(ike_sa_id, entry->ike_sa_id))
842 {
843 current->sas->remove_at(current->sas, inner);
844 ike_sa_id->destroy(ike_sa_id);
845 this->connected_peers_segments[segment].count--;
846 break;
847 }
848 }
849 inner->destroy(inner);
850 if (current->sas->get_count(current->sas) == 0)
851 {
852 list->remove_at(list, enumerator);
853 connected_peers_destroy(current);
854 }
855 break;
856 }
857 }
858 enumerator->destroy(enumerator);
859 }
860 lock->unlock(lock);
861 }
862
863 /**
864 * Implementation of private_ike_sa_manager_t.get_next_spi.
865 */
866 static u_int64_t get_next_spi(private_ike_sa_manager_t *this)
867 {
868 u_int64_t spi;
869
870 this->rng->get_bytes(this->rng, sizeof(spi), (u_int8_t*)&spi);
871 return spi;
872 }
873
874 /**
875 * Implementation of of ike_sa_manager.checkout.
876 */
877 static ike_sa_t* checkout(private_ike_sa_manager_t *this, ike_sa_id_t *ike_sa_id)
878 {
879 ike_sa_t *ike_sa = NULL;
880 entry_t *entry;
881 u_int segment;
882
883 DBG2(DBG_MGR, "checkout IKE_SA");
884
885 if (get_entry_by_id(this, ike_sa_id, &entry, &segment) == SUCCESS)
886 {
887 if (wait_for_entry(this, entry, segment))
888 {
889 DBG2(DBG_MGR, "IKE_SA successfully checked out");
890 entry->checked_out = TRUE;
891 ike_sa = entry->ike_sa;
892 }
893 unlock_single_segment(this, segment);
894 }
895 charon->bus->set_sa(charon->bus, ike_sa);
896 return ike_sa;
897 }
898
899 /**
900 * Implementation of of ike_sa_manager.checkout_new.
901 */
902 static ike_sa_t *checkout_new(private_ike_sa_manager_t* this, bool initiator)
903 {
904 ike_sa_id_t *ike_sa_id;
905 ike_sa_t *ike_sa;
906 entry_t *entry;
907 u_int segment;
908
909 if (initiator)
910 {
911 ike_sa_id = ike_sa_id_create(get_next_spi(this), 0, TRUE);
912 }
913 else
914 {
915 ike_sa_id = ike_sa_id_create(0, get_next_spi(this), FALSE);
916 }
917 ike_sa = ike_sa_create(ike_sa_id);
918
919 DBG2(DBG_MGR, "created IKE_SA");
920
921 if (!initiator)
922 {
923 ike_sa_id->destroy(ike_sa_id);
924 return ike_sa;
925 }
926
927 entry = entry_create();
928 entry->ike_sa_id = ike_sa_id;
929 entry->ike_sa = ike_sa;
930 segment = put_entry(this, entry);
931 entry->checked_out = TRUE;
932 unlock_single_segment(this, segment);
933 return entry->ike_sa;
934 }
935
936 /**
937 * Implementation of of ike_sa_manager.checkout_by_message.
938 */
939 static ike_sa_t* checkout_by_message(private_ike_sa_manager_t* this,
940 message_t *message)
941 {
942 u_int segment;
943 entry_t *entry;
944 ike_sa_t *ike_sa = NULL;
945 ike_sa_id_t *id = message->get_ike_sa_id(message);
946
947 id = id->clone(id);
948 id->switch_initiator(id);
949
950 DBG2(DBG_MGR, "checkout IKE_SA by message");
951
952 if (message->get_request(message) &&
953 message->get_exchange_type(message) == IKE_SA_INIT)
954 {
955 /* IKE_SA_INIT request. Check for an IKE_SA with such a message hash. */
956 chunk_t data, hash;
957
958 data = message->get_packet_data(message);
959 this->hasher->allocate_hash(this->hasher, data, &hash);
960 chunk_free(&data);
961
962 if (get_entry_by_hash(this, id, hash, &entry, &segment) == SUCCESS)
963 {
964 if (entry->message_id == 0)
965 {
966 unlock_single_segment(this, segment);
967 chunk_free(&hash);
968 id->destroy(id);
969 DBG1(DBG_MGR, "ignoring IKE_SA_INIT, already processing");
970 return NULL;
971 }
972 else if (wait_for_entry(this, entry, segment))
973 {
974 DBG2(DBG_MGR, "IKE_SA checked out by hash");
975 entry->checked_out = TRUE;
976 entry->message_id = message->get_message_id(message);
977 ike_sa = entry->ike_sa;
978 }
979 unlock_single_segment(this, segment);
980 }
981
982 if (ike_sa == NULL)
983 {
984 if (id->get_responder_spi(id) == 0 &&
985 message->get_exchange_type(message) == IKE_SA_INIT)
986 {
987 /* no IKE_SA found, create a new one */
988 id->set_responder_spi(id, get_next_spi(this));
989 entry = entry_create();
990 entry->ike_sa = ike_sa_create(id);
991 entry->ike_sa_id = id->clone(id);
992
993 segment = put_entry(this, entry);
994 entry->checked_out = TRUE;
995 unlock_single_segment(this, segment);
996
997 entry->message_id = message->get_message_id(message);
998 entry->init_hash = hash;
999 ike_sa = entry->ike_sa;
1000
1001 DBG2(DBG_MGR, "created IKE_SA");
1002 }
1003 else
1004 {
1005 chunk_free(&hash);
1006 DBG1(DBG_MGR, "ignoring message, no such IKE_SA");
1007 }
1008 }
1009 else
1010 {
1011 chunk_free(&hash);
1012 }
1013 id->destroy(id);
1014 charon->bus->set_sa(charon->bus, ike_sa);
1015 return ike_sa;
1016 }
1017
1018 if (get_entry_by_id(this, id, &entry, &segment) == SUCCESS)
1019 {
1020 /* only check out if we are not processing this request */
1021 if (message->get_request(message) &&
1022 message->get_message_id(message) == entry->message_id)
1023 {
1024 DBG1(DBG_MGR, "ignoring request with ID %d, already processing",
1025 entry->message_id);
1026 }
1027 else if (wait_for_entry(this, entry, segment))
1028 {
1029 ike_sa_id_t *ike_id = entry->ike_sa->get_id(entry->ike_sa);
1030 DBG2(DBG_MGR, "IKE_SA successfully checked out");
1031 entry->checked_out = TRUE;
1032 entry->message_id = message->get_message_id(message);
1033 if (ike_id->get_responder_spi(ike_id) == 0)
1034 {
1035 ike_id->set_responder_spi(ike_id, id->get_responder_spi(id));
1036 }
1037 ike_sa = entry->ike_sa;
1038 }
1039 unlock_single_segment(this, segment);
1040 }
1041 id->destroy(id);
1042 charon->bus->set_sa(charon->bus, ike_sa);
1043 return ike_sa;
1044 }
1045
1046 /**
1047 * Implementation of of ike_sa_manager.checkout_by_config.
1048 */
1049 static ike_sa_t* checkout_by_config(private_ike_sa_manager_t *this,
1050 peer_cfg_t *peer_cfg)
1051 {
1052 enumerator_t *enumerator;
1053 entry_t *entry;
1054 ike_sa_t *ike_sa = NULL;
1055 peer_cfg_t *current_peer;
1056 ike_cfg_t *current_ike;
1057 u_int segment;
1058
1059 if (!this->reuse_ikesa)
1060 { /* IKE_SA reuse disable by config */
1061 ike_sa = checkout_new(this, TRUE);
1062 charon->bus->set_sa(charon->bus, ike_sa);
1063 return ike_sa;
1064 }
1065
1066 enumerator = create_table_enumerator(this);
1067 while (enumerator->enumerate(enumerator, &entry, &segment))
1068 {
1069 if (!wait_for_entry(this, entry, segment))
1070 {
1071 continue;
1072 }
1073 if (entry->ike_sa->get_state(entry->ike_sa) == IKE_DELETING)
1074 { /* skip IKE_SAs which are not usable */
1075 continue;
1076 }
1077
1078 current_peer = entry->ike_sa->get_peer_cfg(entry->ike_sa);
1079 if (current_peer && current_peer->equals(current_peer, peer_cfg))
1080 {
1081 current_ike = current_peer->get_ike_cfg(current_peer);
1082 if (current_ike->equals(current_ike, peer_cfg->get_ike_cfg(peer_cfg)))
1083 {
1084 DBG2(DBG_MGR, "found an existing IKE_SA with a '%s' config",
1085 current_peer->get_name(current_peer));
1086 entry->checked_out = TRUE;
1087 ike_sa = entry->ike_sa;
1088 break;
1089 }
1090 }
1091 }
1092 enumerator->destroy(enumerator);
1093
1094 if (!ike_sa)
1095 { /* no IKE_SA using such a config, hand out a new */
1096 ike_sa = checkout_new(this, TRUE);
1097 }
1098 charon->bus->set_sa(charon->bus, ike_sa);
1099 return ike_sa;
1100 }
1101
1102 /**
1103 * Implementation of of ike_sa_manager.checkout_by_id.
1104 */
1105 static ike_sa_t* checkout_by_id(private_ike_sa_manager_t *this, u_int32_t id,
1106 bool child)
1107 {
1108 enumerator_t *enumerator;
1109 iterator_t *children;
1110 entry_t *entry;
1111 ike_sa_t *ike_sa = NULL;
1112 child_sa_t *child_sa;
1113 u_int segment;
1114
1115 enumerator = create_table_enumerator(this);
1116 while (enumerator->enumerate(enumerator, &entry, &segment))
1117 {
1118 if (wait_for_entry(this, entry, segment))
1119 {
1120 /* look for a child with such a reqid ... */
1121 if (child)
1122 {
1123 children = entry->ike_sa->create_child_sa_iterator(entry->ike_sa);
1124 while (children->iterate(children, (void**)&child_sa))
1125 {
1126 if (child_sa->get_reqid(child_sa) == id)
1127 {
1128 ike_sa = entry->ike_sa;
1129 break;
1130 }
1131 }
1132 children->destroy(children);
1133 }
1134 else /* ... or for a IKE_SA with such a unique id */
1135 {
1136 if (entry->ike_sa->get_unique_id(entry->ike_sa) == id)
1137 {
1138 ike_sa = entry->ike_sa;
1139 }
1140 }
1141 /* got one, return */
1142 if (ike_sa)
1143 {
1144 entry->checked_out = TRUE;
1145 break;
1146 }
1147 }
1148 }
1149 enumerator->destroy(enumerator);
1150
1151 charon->bus->set_sa(charon->bus, ike_sa);
1152 return ike_sa;
1153 }
1154
1155 /**
1156 * Implementation of of ike_sa_manager.checkout_by_name.
1157 */
1158 static ike_sa_t* checkout_by_name(private_ike_sa_manager_t *this, char *name,
1159 bool child)
1160 {
1161 enumerator_t *enumerator;
1162 iterator_t *children;
1163 entry_t *entry;
1164 ike_sa_t *ike_sa = NULL;
1165 child_sa_t *child_sa;
1166 u_int segment;
1167
1168 enumerator = create_table_enumerator(this);
1169 while (enumerator->enumerate(enumerator, &entry, &segment))
1170 {
1171 if (wait_for_entry(this, entry, segment))
1172 {
1173 /* look for a child with such a policy name ... */
1174 if (child)
1175 {
1176 children = entry->ike_sa->create_child_sa_iterator(entry->ike_sa);
1177 while (children->iterate(children, (void**)&child_sa))
1178 {
1179 if (streq(child_sa->get_name(child_sa), name))
1180 {
1181 ike_sa = entry->ike_sa;
1182 break;
1183 }
1184 }
1185 children->destroy(children);
1186 }
1187 else /* ... or for a IKE_SA with such a connection name */
1188 {
1189 if (streq(entry->ike_sa->get_name(entry->ike_sa), name))
1190 {
1191 ike_sa = entry->ike_sa;
1192 }
1193 }
1194 /* got one, return */
1195 if (ike_sa)
1196 {
1197 entry->checked_out = TRUE;
1198 break;
1199 }
1200 }
1201 }
1202 enumerator->destroy(enumerator);
1203
1204 charon->bus->set_sa(charon->bus, ike_sa);
1205 return ike_sa;
1206 }
1207
1208 /**
1209 * enumerator filter function
1210 */
1211 static bool enumerator_filter(private_ike_sa_manager_t *this,
1212 entry_t **in, ike_sa_t **out, u_int *segment)
1213 {
1214 if (wait_for_entry(this, *in, *segment))
1215 {
1216 *out = (*in)->ike_sa;
1217 return TRUE;
1218 }
1219 return FALSE;
1220 }
1221
1222 /**
1223 * Implementation of ike_sa_manager_t.create_enumerator.
1224 */
1225 static enumerator_t *create_enumerator(private_ike_sa_manager_t* this)
1226 {
1227 return enumerator_create_filter(
1228 create_table_enumerator(this),
1229 (void*)enumerator_filter, this, NULL);
1230 }
1231
1232 /**
1233 * Implementation of ike_sa_manager_t.checkin.
1234 */
1235 static void checkin(private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
1236 {
1237 /* to check the SA back in, we look for the pointer of the ike_sa
1238 * in all entries.
1239 * The lookup is done by initiator SPI, so even if the SPI has changed (e.g.
1240 * on reception of a IKE_SA_INIT response) the lookup will work but
1241 * updating of the SPI MAY be necessary...
1242 */
1243 entry_t *entry;
1244 ike_sa_id_t *ike_sa_id;
1245 host_t *other;
1246 identification_t *my_id, *other_id;
1247 u_int segment;
1248
1249 ike_sa_id = ike_sa->get_id(ike_sa);
1250 my_id = ike_sa->get_my_id(ike_sa);
1251 other_id = ike_sa->get_other_id(ike_sa);
1252 other = ike_sa->get_other_host(ike_sa);
1253
1254 DBG2(DBG_MGR, "checkin IKE_SA");
1255
1256 /* look for the entry */
1257 if (get_entry_by_sa(this, ike_sa_id, ike_sa, &entry, &segment) == SUCCESS)
1258 {
1259 /* ike_sa_id must be updated */
1260 entry->ike_sa_id->replace_values(entry->ike_sa_id, ike_sa->get_id(ike_sa));
1261 /* signal waiting threads */
1262 entry->checked_out = FALSE;
1263 entry->message_id = -1;
1264 /* check if this SA is half-open */
1265 if (entry->half_open && ike_sa->get_state(ike_sa) != IKE_CONNECTING)
1266 {
1267 /* not half open anymore */
1268 entry->half_open = FALSE;
1269 remove_half_open(this, entry);
1270 }
1271 else if (entry->half_open && !other->ip_equals(other, entry->other))
1272 {
1273 /* the other host's IP has changed, we must update the hash table */
1274 remove_half_open(this, entry);
1275 DESTROY_IF(entry->other);
1276 entry->other = other->clone(other);
1277 put_half_open(this, entry);
1278 }
1279 else if (!entry->half_open &&
1280 !entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
1281 ike_sa->get_state(ike_sa) == IKE_CONNECTING)
1282 {
1283 /* this is a new half-open SA */
1284 entry->half_open = TRUE;
1285 entry->other = other->clone(other);
1286 put_half_open(this, entry);
1287 }
1288 DBG2(DBG_MGR, "check-in of IKE_SA successful.");
1289 entry->condvar->signal(entry->condvar);
1290 }
1291 else
1292 {
1293 entry = entry_create();
1294 entry->ike_sa_id = ike_sa_id->clone(ike_sa_id);
1295 entry->ike_sa = ike_sa;
1296 segment = put_entry(this, entry);
1297 }
1298
1299 /* apply identities for duplicate test (only as responder) */
1300 if (!entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
1301 ike_sa->get_state(ike_sa) == IKE_ESTABLISHED &&
1302 entry->my_id == NULL && entry->other_id == NULL)
1303 {
1304 entry->my_id = my_id->clone(my_id);
1305 entry->other_id = other_id->clone(other_id);
1306 put_connected_peers(this, entry);
1307 }
1308
1309 unlock_single_segment(this, segment);
1310
1311 charon->bus->set_sa(charon->bus, NULL);
1312 }
1313
1314 /**
1315 * Implementation of ike_sa_manager_t.checkin_and_destroy.
1316 */
1317 static void checkin_and_destroy(private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
1318 {
1319 /* deletion is a bit complex, we must ensure that no thread is waiting for
1320 * this SA.
1321 * We take this SA from the table, and start signaling while threads
1322 * are in the condvar.
1323 */
1324 entry_t *entry;
1325 ike_sa_id_t *ike_sa_id;
1326 u_int segment;
1327
1328 ike_sa_id = ike_sa->get_id(ike_sa);
1329
1330 DBG2(DBG_MGR, "checkin and destroy IKE_SA");
1331
1332 if (get_entry_by_sa(this, ike_sa_id, ike_sa, &entry, &segment) == SUCCESS)
1333 {
1334 /* drive out waiting threads, as we are in hurry */
1335 entry->driveout_waiting_threads = TRUE;
1336 /* mark it, so no new threads can get this entry */
1337 entry->driveout_new_threads = TRUE;
1338 /* wait until all workers have done their work */
1339 while (entry->waiting_threads)
1340 {
1341 /* wake up all */
1342 entry->condvar->broadcast(entry->condvar);
1343 /* they will wake us again when their work is done */
1344 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
1345 }
1346 remove_entry(this, entry);
1347 unlock_single_segment(this, segment);
1348
1349 if (entry->half_open)
1350 {
1351 remove_half_open(this, entry);
1352 }
1353 if (!entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
1354 entry->my_id && entry->other_id)
1355 {
1356 remove_connected_peers(this, entry);
1357 }
1358
1359 entry_destroy(entry);
1360
1361 DBG2(DBG_MGR, "check-in and destroy of IKE_SA successful");
1362 }
1363 else
1364 {
1365 DBG1(DBG_MGR, "tried to check-in and delete nonexisting IKE_SA");
1366 ike_sa->destroy(ike_sa);
1367 }
1368 charon->bus->set_sa(charon->bus, NULL);
1369 }
1370
1371
1372 /**
1373 * Implementation of ike_sa_manager_t.check_uniqueness.
1374 */
1375 static bool check_uniqueness(private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
1376 {
1377 bool cancel = FALSE;
1378 peer_cfg_t *peer_cfg;
1379 unique_policy_t policy;
1380 linked_list_t *list, *duplicate_ids = NULL;
1381 enumerator_t *enumerator;
1382 ike_sa_id_t *duplicate_id = NULL;
1383 identification_t *me, *other;
1384 u_int row, segment;
1385 rwlock_t *lock;
1386
1387 peer_cfg = ike_sa->get_peer_cfg(ike_sa);
1388 policy = peer_cfg->get_unique_policy(peer_cfg);
1389 if (policy == UNIQUE_NO)
1390 {
1391 return FALSE;
1392 }
1393
1394 me = ike_sa->get_my_id(ike_sa);
1395 other = ike_sa->get_other_id(ike_sa);
1396
1397 row = chunk_hash_inc(other->get_encoding(other),
1398 chunk_hash(me->get_encoding(me))) & this->table_mask;
1399 segment = row & this->segment_mask;
1400
1401 lock = this->connected_peers_segments[segment & this->segment_mask].lock;
1402 lock->read_lock(lock);
1403 if ((list = this->connected_peers_table[row]) != NULL)
1404 {
1405 connected_peers_t *current;
1406
1407 if (list->find_first(list, (linked_list_match_t)connected_peers_match,
1408 (void**)&current, me, other) == SUCCESS)
1409 {
1410 /* clone the list, so we can release the lock */
1411 duplicate_ids = current->sas->clone_offset(current->sas,
1412 offsetof(ike_sa_id_t, clone));
1413 }
1414 }
1415 lock->unlock(lock);
1416
1417 if (!duplicate_ids)
1418 {
1419 return FALSE;
1420 }
1421
1422 enumerator = duplicate_ids->create_enumerator(duplicate_ids);
1423 while (enumerator->enumerate(enumerator, &duplicate_id))
1424 {
1425 status_t status = SUCCESS;
1426 ike_sa_t *duplicate;
1427
1428 duplicate = checkout(this, duplicate_id);
1429 if (!duplicate)
1430 {
1431 continue;
1432 }
1433 peer_cfg = duplicate->get_peer_cfg(duplicate);
1434 if (peer_cfg && peer_cfg->equals(peer_cfg, ike_sa->get_peer_cfg(ike_sa)))
1435 {
1436 switch (duplicate->get_state(duplicate))
1437 {
1438 case IKE_ESTABLISHED:
1439 case IKE_REKEYING:
1440 switch (policy)
1441 {
1442 case UNIQUE_REPLACE:
1443 DBG1(DBG_IKE, "deleting duplicate IKE_SA for peer "
1444 "'%Y' due to uniqueness policy", other);
1445 status = duplicate->delete(duplicate);
1446 break;
1447 case UNIQUE_KEEP:
1448 cancel = TRUE;
1449 /* we keep the first IKE_SA and delete all
1450 * other duplicates that might exist */
1451 policy = UNIQUE_REPLACE;
1452 break;
1453 default:
1454 break;
1455 }
1456 break;
1457 default:
1458 break;
1459 }
1460 }
1461 if (status == DESTROY_ME)
1462 {
1463 checkin_and_destroy(this, duplicate);
1464 }
1465 else
1466 {
1467 checkin(this, duplicate);
1468 }
1469 }
1470 enumerator->destroy(enumerator);
1471 duplicate_ids->destroy_offset(duplicate_ids, offsetof(ike_sa_id_t, destroy));
1472 /* reset thread's current IKE_SA after checkin */
1473 charon->bus->set_sa(charon->bus, ike_sa);
1474 return cancel;
1475 }
1476
1477 /**
1478 * Implementation of ike_sa_manager_t.get_half_open_count.
1479 */
1480 static int get_half_open_count(private_ike_sa_manager_t *this, host_t *ip)
1481 {
1482 int count = 0;
1483
1484 if (ip)
1485 {
1486 linked_list_t *list;
1487 chunk_t addr = ip->get_address(ip);
1488 u_int row = chunk_hash(addr) & this->table_mask;
1489 u_int segment = row & this->segment_mask;
1490
1491 rwlock_t *lock = this->half_open_segments[segment & this->segment_mask].lock;
1492 lock->read_lock(lock);
1493 if ((list = this->half_open_table[row]) != NULL)
1494 {
1495 half_open_t *current;
1496
1497 if (list->find_first(list, (linked_list_match_t)half_open_match,
1498 (void**)&current, &addr) == SUCCESS)
1499 {
1500 count = current->count;
1501 }
1502 }
1503 lock->unlock(lock);
1504 }
1505 else
1506 {
1507 u_int segment;
1508
1509 for (segment = 0; segment < this->segment_count; ++segment)
1510 {
1511 rwlock_t *lock;
1512 lock = this->half_open_segments[segment & this->segment_mask].lock;
1513 lock->read_lock(lock);
1514 count += this->half_open_segments[segment].count;
1515 lock->unlock(lock);
1516 }
1517 }
1518
1519 return count;
1520 }
1521
1522 /**
1523 * Implementation of ike_sa_manager_t.flush.
1524 */
1525 static void flush(private_ike_sa_manager_t *this)
1526 {
1527 /* destroy all list entries */
1528 enumerator_t *enumerator;
1529 entry_t *entry;
1530 u_int segment;
1531
1532 lock_all_segments(this);
1533 DBG2(DBG_MGR, "going to destroy IKE_SA manager and all managed IKE_SA's");
1534 /* Step 1: drive out all waiting threads */
1535 DBG2(DBG_MGR, "set driveout flags for all stored IKE_SA's");
1536 enumerator = create_table_enumerator(this);
1537 while (enumerator->enumerate(enumerator, &entry, &segment))
1538 {
1539 /* do not accept new threads, drive out waiting threads */
1540 entry->driveout_new_threads = TRUE;
1541 entry->driveout_waiting_threads = TRUE;
1542 }
1543 enumerator->destroy(enumerator);
1544 DBG2(DBG_MGR, "wait for all threads to leave IKE_SA's");
1545 /* Step 2: wait until all are gone */
1546 enumerator = create_table_enumerator(this);
1547 while (enumerator->enumerate(enumerator, &entry, &segment))
1548 {
1549 while (entry->waiting_threads || entry->checked_out)
1550 {
1551 /* wake up all */
1552 entry->condvar->broadcast(entry->condvar);
1553 /* go sleeping until they are gone */
1554 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
1555 }
1556 }
1557 enumerator->destroy(enumerator);
1558 DBG2(DBG_MGR, "delete all IKE_SA's");
1559 /* Step 3: initiate deletion of all IKE_SAs */
1560 enumerator = create_table_enumerator(this);
1561 while (enumerator->enumerate(enumerator, &entry, &segment))
1562 {
1563 charon->bus->set_sa(charon->bus, entry->ike_sa);
1564 /* as the delete never gets processed, fire down events */
1565 switch (entry->ike_sa->get_state(entry->ike_sa))
1566 {
1567 case IKE_ESTABLISHED:
1568 case IKE_REKEYING:
1569 case IKE_DELETING:
1570 charon->bus->ike_updown(charon->bus, entry->ike_sa, FALSE);
1571 break;
1572 default:
1573 break;
1574 }
1575 entry->ike_sa->delete(entry->ike_sa);
1576 }
1577 enumerator->destroy(enumerator);
1578
1579 DBG2(DBG_MGR, "destroy all entries");
1580 /* Step 4: destroy all entries */
1581 enumerator = create_table_enumerator(this);
1582 while (enumerator->enumerate(enumerator, &entry, &segment))
1583 {
1584 charon->bus->set_sa(charon->bus, entry->ike_sa);
1585 if (entry->half_open)
1586 {
1587 remove_half_open(this, entry);
1588 }
1589 if (!entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
1590 entry->my_id && entry->other_id)
1591 {
1592 remove_connected_peers(this, entry);
1593 }
1594 remove_entry_at((private_enumerator_t*)enumerator);
1595 entry_destroy(entry);
1596 }
1597 enumerator->destroy(enumerator);
1598 charon->bus->set_sa(charon->bus, NULL);
1599 unlock_all_segments(this);
1600 }
1601
1602 /**
1603 * Implementation of ike_sa_manager_t.destroy.
1604 */
1605 static void destroy(private_ike_sa_manager_t *this)
1606 {
1607 u_int i;
1608
1609 for (i = 0; i < this->table_size; ++i)
1610 {
1611 linked_list_t *list;
1612
1613 if ((list = this->ike_sa_table[i]) != NULL)
1614 {
1615 list->destroy(list);
1616 }
1617 if ((list = this->half_open_table[i]) != NULL)
1618 {
1619 list->destroy(list);
1620 }
1621 if ((list = this->connected_peers_table[i]) != NULL)
1622 {
1623 list->destroy(list);
1624 }
1625 }
1626 free(this->ike_sa_table);
1627 free(this->half_open_table);
1628 free(this->connected_peers_table);
1629 for (i = 0; i < this->segment_count; ++i)
1630 {
1631 this->segments[i].mutex->destroy(this->segments[i].mutex);
1632 this->half_open_segments[i].lock->destroy(this->half_open_segments[i].lock);
1633 this->connected_peers_segments[i].lock->destroy(this->connected_peers_segments[i].lock);
1634 }
1635 free(this->segments);
1636 free(this->half_open_segments);
1637 free(this->connected_peers_segments);
1638
1639 this->rng->destroy(this->rng);
1640 this->hasher->destroy(this->hasher);
1641 free(this);
1642 }
1643
1644 /**
1645 * This function returns the next-highest power of two for the given number.
1646 * The algorithm works by setting all bits on the right-hand side of the most
1647 * significant 1 to 1 and then increments the whole number so it rolls over
1648 * to the nearest power of two. Note: returns 0 for n == 0
1649 */
1650 static u_int get_nearest_powerof2(u_int n)
1651 {
1652 u_int i;
1653
1654 --n;
1655 for (i = 1; i < sizeof(u_int) * 8; i <<= 1)
1656 {
1657 n |= n >> i;
1658 }
1659 return ++n;
1660 }
1661
1662 /*
1663 * Described in header.
1664 */
1665 ike_sa_manager_t *ike_sa_manager_create()
1666 {
1667 u_int i;
1668 private_ike_sa_manager_t *this = malloc_thing(private_ike_sa_manager_t);
1669
1670 /* assign public functions */
1671 this->public.flush = (void(*)(ike_sa_manager_t*))flush;
1672 this->public.destroy = (void(*)(ike_sa_manager_t*))destroy;
1673 this->public.checkout = (ike_sa_t*(*)(ike_sa_manager_t*, ike_sa_id_t*))checkout;
1674 this->public.checkout_new = (ike_sa_t*(*)(ike_sa_manager_t*,bool))checkout_new;
1675 this->public.checkout_by_message = (ike_sa_t*(*)(ike_sa_manager_t*,message_t*))checkout_by_message;
1676 this->public.checkout_by_config = (ike_sa_t*(*)(ike_sa_manager_t*,peer_cfg_t*))checkout_by_config;
1677 this->public.checkout_by_id = (ike_sa_t*(*)(ike_sa_manager_t*,u_int32_t,bool))checkout_by_id;
1678 this->public.checkout_by_name = (ike_sa_t*(*)(ike_sa_manager_t*,char*,bool))checkout_by_name;
1679 this->public.check_uniqueness = (bool(*)(ike_sa_manager_t*, ike_sa_t *ike_sa))check_uniqueness;
1680 this->public.create_enumerator = (enumerator_t*(*)(ike_sa_manager_t*))create_enumerator;
1681 this->public.checkin = (void(*)(ike_sa_manager_t*,ike_sa_t*))checkin;
1682 this->public.checkin_and_destroy = (void(*)(ike_sa_manager_t*,ike_sa_t*))checkin_and_destroy;
1683 this->public.get_half_open_count = (int(*)(ike_sa_manager_t*,host_t*))get_half_open_count;
1684
1685 /* initialize private variables */
1686 this->hasher = lib->crypto->create_hasher(lib->crypto, HASH_PREFERRED);
1687 if (this->hasher == NULL)
1688 {
1689 DBG1(DBG_MGR, "manager initialization failed, no hasher supported");
1690 free(this);
1691 return NULL;
1692 }
1693 this->rng = lib->crypto->create_rng(lib->crypto, RNG_WEAK);
1694 if (this->rng == NULL)
1695 {
1696 DBG1(DBG_MGR, "manager initialization failed, no RNG supported");
1697 this->hasher->destroy(this->hasher);
1698 free(this);
1699 return NULL;
1700 }
1701 this->table_size = get_nearest_powerof2(lib->settings->get_int(lib->settings,
1702 "charon.ikesa_table_size", DEFAULT_HASHTABLE_SIZE));
1703 this->table_size = max(1, min(this->table_size, MAX_HASHTABLE_SIZE));
1704 this->table_mask = this->table_size - 1;
1705
1706 this->segment_count = get_nearest_powerof2(lib->settings->get_int(lib->settings,
1707 "charon.ikesa_table_segments", DEFAULT_SEGMENT_COUNT));
1708 this->segment_count = max(1, min(this->segment_count, this->table_size));
1709 this->segment_mask = this->segment_count - 1;
1710
1711 this->ike_sa_table = calloc(this->table_size, sizeof(linked_list_t*));
1712
1713 this->segments = (segment_t*)calloc(this->segment_count, sizeof(segment_t));
1714 for (i = 0; i < this->segment_count; ++i)
1715 {
1716 this->segments[i].mutex = mutex_create(MUTEX_TYPE_RECURSIVE);
1717 this->segments[i].count = 0;
1718 }
1719
1720 /* we use the same table parameters for the table to track half-open SAs */
1721 this->half_open_table = calloc(this->table_size, sizeof(linked_list_t*));
1722 this->half_open_segments = calloc(this->segment_count, sizeof(shareable_segment_t));
1723 for (i = 0; i < this->segment_count; ++i)
1724 {
1725 this->half_open_segments[i].lock = rwlock_create(RWLOCK_TYPE_DEFAULT);
1726 this->half_open_segments[i].count = 0;
1727 }
1728
1729 /* also for the hash table used for duplicate tests */
1730 this->connected_peers_table = calloc(this->table_size, sizeof(linked_list_t*));
1731 this->connected_peers_segments = calloc(this->segment_count, sizeof(shareable_segment_t));
1732 for (i = 0; i < this->segment_count; ++i)
1733 {
1734 this->connected_peers_segments[i].lock = rwlock_create(RWLOCK_TYPE_DEFAULT);
1735 this->connected_peers_segments[i].count = 0;
1736 }
1737
1738 this->reuse_ikesa = lib->settings->get_bool(lib->settings,
1739 "charon.reuse_ikesa", TRUE);
1740 return &this->public;
1741 }