Implemented responder retransmission, currently enabled for quick mode only
[strongswan.git] / src / libcharon / sa / ike_sa_manager.c
1 /*
2 * Copyright (C) 2005-2011 Martin Willi
3 * Copyright (C) 2011 revosec AG
4 * Copyright (C) 2008 Tobias Brunner
5 * Copyright (C) 2005 Jan Hutter
6 * Hochschule fuer Technik Rapperswil
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 */
18
19 #include <string.h>
20
21 #include "ike_sa_manager.h"
22
23 #include <daemon.h>
24 #include <sa/ike_sa_id.h>
25 #include <bus/bus.h>
26 #include <threading/condvar.h>
27 #include <threading/mutex.h>
28 #include <threading/rwlock.h>
29 #include <utils/linked_list.h>
30 #include <crypto/hashers/hasher.h>
31
32 /* the default size of the hash table (MUST be a power of 2) */
33 #define DEFAULT_HASHTABLE_SIZE 1
34
35 /* the maximum size of the hash table (MUST be a power of 2) */
36 #define MAX_HASHTABLE_SIZE (1 << 30)
37
38 /* the default number of segments (MUST be a power of 2) */
39 #define DEFAULT_SEGMENT_COUNT 1
40
41 typedef struct entry_t entry_t;
42
43 /**
44 * An entry in the linked list, contains IKE_SA, locking and lookup data.
45 */
46 struct entry_t {
47
48 /**
49 * Number of threads waiting for this ike_sa_t object.
50 */
51 int waiting_threads;
52
53 /**
54 * Condvar where threads can wait until ike_sa_t object is free for use again.
55 */
56 condvar_t *condvar;
57
58 /**
59 * Is this ike_sa currently checked out?
60 */
61 bool checked_out;
62
63 /**
64 * Does this SA drives out new threads?
65 */
66 bool driveout_new_threads;
67
68 /**
69 * Does this SA drives out waiting threads?
70 */
71 bool driveout_waiting_threads;
72
73 /**
74 * Identification of an IKE_SA (SPIs).
75 */
76 ike_sa_id_t *ike_sa_id;
77
78 /**
79 * The contained ike_sa_t object.
80 */
81 ike_sa_t *ike_sa;
82
83 /**
84 * hash of the IKE_SA_INIT message, used to detect retransmissions
85 */
86 chunk_t init_hash;
87
88 /**
89 * remote host address, required for DoS detection and duplicate
90 * checking (host with same my_id and other_id is *not* considered
91 * a duplicate if the address family differs)
92 */
93 host_t *other;
94
95 /**
96 * As responder: Is this SA half-open?
97 */
98 bool half_open;
99
100 /**
101 * own identity, required for duplicate checking
102 */
103 identification_t *my_id;
104
105 /**
106 * remote identity, required for duplicate checking
107 */
108 identification_t *other_id;
109
110 /**
111 * message ID currently processing, if any
112 */
113 u_int32_t message_id;
114 };
115
116 /**
117 * Implementation of entry_t.destroy.
118 */
119 static status_t entry_destroy(entry_t *this)
120 {
121 /* also destroy IKE SA */
122 this->ike_sa->destroy(this->ike_sa);
123 this->ike_sa_id->destroy(this->ike_sa_id);
124 chunk_free(&this->init_hash);
125 DESTROY_IF(this->other);
126 DESTROY_IF(this->my_id);
127 DESTROY_IF(this->other_id);
128 this->condvar->destroy(this->condvar);
129 free(this);
130 return SUCCESS;
131 }
132
133 /**
134 * Creates a new entry for the ike_sa_t list.
135 */
136 static entry_t *entry_create()
137 {
138 entry_t *this = malloc_thing(entry_t);
139
140 this->waiting_threads = 0;
141 this->condvar = condvar_create(CONDVAR_TYPE_DEFAULT);
142
143 /* we set checkout flag when we really give it out */
144 this->checked_out = FALSE;
145 this->driveout_new_threads = FALSE;
146 this->driveout_waiting_threads = FALSE;
147 this->message_id = -1;
148 this->init_hash = chunk_empty;
149 this->other = NULL;
150 this->half_open = FALSE;
151 this->my_id = NULL;
152 this->other_id = NULL;
153 this->ike_sa_id = NULL;
154 this->ike_sa = NULL;
155
156 return this;
157 }
158
159 /**
160 * Function that matches entry_t objects by initiator SPI and the hash of the
161 * IKE_SA_INIT message.
162 */
163 static bool entry_match_by_hash(entry_t *entry, ike_sa_id_t *id, chunk_t *hash)
164 {
165 return id->get_responder_spi(id) == 0 &&
166 id->get_initiator_spi(id) == entry->ike_sa_id->get_initiator_spi(entry->ike_sa_id) &&
167 chunk_equals(*hash, entry->init_hash);
168 }
169
170 /**
171 * Function that matches entry_t objects by ike_sa_id_t.
172 */
173 static bool entry_match_by_id(entry_t *entry, ike_sa_id_t *id)
174 {
175 if (id->equals(id, entry->ike_sa_id))
176 {
177 return TRUE;
178 }
179 if ((id->get_responder_spi(id) == 0 ||
180 entry->ike_sa_id->get_responder_spi(entry->ike_sa_id) == 0) &&
181 id->get_initiator_spi(id) == entry->ike_sa_id->get_initiator_spi(entry->ike_sa_id))
182 {
183 /* this is TRUE for IKE_SAs that we initiated but have not yet received a response */
184 return TRUE;
185 }
186 return FALSE;
187 }
188
189 /**
190 * Function that matches entry_t objects by ike_sa_t pointers.
191 */
192 static bool entry_match_by_sa(entry_t *entry, ike_sa_t *ike_sa)
193 {
194 return entry->ike_sa == ike_sa;
195 }
196
197 /**
198 * Hash function for ike_sa_id_t objects.
199 */
200 static u_int ike_sa_id_hash(ike_sa_id_t *ike_sa_id)
201 {
202 /* we always use initiator spi as key */
203 return ike_sa_id->get_initiator_spi(ike_sa_id);
204 }
205
206 typedef struct half_open_t half_open_t;
207
208 /**
209 * Struct to manage half-open IKE_SAs per peer.
210 */
211 struct half_open_t {
212 /** chunk of remote host address */
213 chunk_t other;
214
215 /** the number of half-open IKE_SAs with that host */
216 u_int count;
217 };
218
219 /**
220 * Destroys a half_open_t object.
221 */
222 static void half_open_destroy(half_open_t *this)
223 {
224 chunk_free(&this->other);
225 free(this);
226 }
227
228 /**
229 * Function that matches half_open_t objects by the given IP address chunk.
230 */
231 static bool half_open_match(half_open_t *half_open, chunk_t *addr)
232 {
233 return chunk_equals(*addr, half_open->other);
234 }
235
236 typedef struct connected_peers_t connected_peers_t;
237
238 struct connected_peers_t {
239 /** own identity */
240 identification_t *my_id;
241
242 /** remote identity */
243 identification_t *other_id;
244
245 /** ip address family of peer */
246 int family;
247
248 /** list of ike_sa_id_t objects of IKE_SAs between the two identities */
249 linked_list_t *sas;
250 };
251
252 static void connected_peers_destroy(connected_peers_t *this)
253 {
254 this->my_id->destroy(this->my_id);
255 this->other_id->destroy(this->other_id);
256 this->sas->destroy(this->sas);
257 free(this);
258 }
259
260 /**
261 * Function that matches connected_peers_t objects by the given ids.
262 */
263 static bool connected_peers_match(connected_peers_t *connected_peers,
264 identification_t *my_id, identification_t *other_id,
265 uintptr_t family)
266 {
267 return my_id->equals(my_id, connected_peers->my_id) &&
268 other_id->equals(other_id, connected_peers->other_id) &&
269 family == connected_peers->family;
270 }
271
272 typedef struct segment_t segment_t;
273
274 /**
275 * Struct to manage segments of the hash table.
276 */
277 struct segment_t {
278 /** mutex to access a segment exclusively */
279 mutex_t *mutex;
280
281 /** the number of entries in this segment */
282 u_int count;
283 };
284
285 typedef struct shareable_segment_t shareable_segment_t;
286
287 /**
288 * Struct to manage segments of the "half-open" and "connected peers" hash tables.
289 */
290 struct shareable_segment_t {
291 /** rwlock to access a segment non-/exclusively */
292 rwlock_t *lock;
293
294 /** the number of entries in this segment - in case of the "half-open table"
295 * it's the sum of all half_open_t.count in a segment. */
296 u_int count;
297 };
298
299 typedef struct private_ike_sa_manager_t private_ike_sa_manager_t;
300
301 /**
302 * Additional private members of ike_sa_manager_t.
303 */
304 struct private_ike_sa_manager_t {
305 /**
306 * Public interface of ike_sa_manager_t.
307 */
308 ike_sa_manager_t public;
309
310 /**
311 * Hash table with entries for the ike_sa_t objects.
312 */
313 linked_list_t **ike_sa_table;
314
315 /**
316 * The size of the hash table.
317 */
318 u_int table_size;
319
320 /**
321 * Mask to map the hashes to table rows.
322 */
323 u_int table_mask;
324
325 /**
326 * Segments of the hash table.
327 */
328 segment_t *segments;
329
330 /**
331 * The number of segments.
332 */
333 u_int segment_count;
334
335 /**
336 * Mask to map a table row to a segment.
337 */
338 u_int segment_mask;
339
340 /**
341 * Hash table with half_open_t objects.
342 */
343 linked_list_t **half_open_table;
344
345 /**
346 * Segments of the "half-open" hash table.
347 */
348 shareable_segment_t *half_open_segments;
349
350 /**
351 * Hash table with connected_peers_t objects.
352 */
353 linked_list_t **connected_peers_table;
354
355 /**
356 * Segments of the "connected peers" hash table.
357 */
358 shareable_segment_t *connected_peers_segments;
359
360 /**
361 * RNG to get random SPIs for our side
362 */
363 rng_t *rng;
364
365 /**
366 * SHA1 hasher for IKE_SA_INIT retransmit detection
367 */
368 hasher_t *hasher;
369
370 /**
371 * reuse existing IKE_SAs in checkout_by_config
372 */
373 bool reuse_ikesa;
374 };
375
376 /**
377 * Acquire a lock to access the segment of the table row with the given index.
378 * It also works with the segment index directly.
379 */
380 static void lock_single_segment(private_ike_sa_manager_t *this, u_int index)
381 {
382 mutex_t *lock = this->segments[index & this->segment_mask].mutex;
383
384 lock->lock(lock);
385 }
386
387 /**
388 * Release the lock required to access the segment of the table row with the given index.
389 * It also works with the segment index directly.
390 */
391 static void unlock_single_segment(private_ike_sa_manager_t *this, u_int index)
392 {
393 mutex_t *lock = this->segments[index & this->segment_mask].mutex;
394
395 lock->unlock(lock);
396 }
397
398 /**
399 * Lock all segments
400 */
401 static void lock_all_segments(private_ike_sa_manager_t *this)
402 {
403 u_int i;
404
405 for (i = 0; i < this->segment_count; i++)
406 {
407 this->segments[i].mutex->lock(this->segments[i].mutex);
408 }
409 }
410
411 /**
412 * Unlock all segments
413 */
414 static void unlock_all_segments(private_ike_sa_manager_t *this)
415 {
416 u_int i;
417
418 for (i = 0; i < this->segment_count; i++)
419 {
420 this->segments[i].mutex->unlock(this->segments[i].mutex);
421 }
422 }
423
424 typedef struct private_enumerator_t private_enumerator_t;
425
426 /**
427 * hash table enumerator implementation
428 */
429 struct private_enumerator_t {
430
431 /**
432 * implements enumerator interface
433 */
434 enumerator_t enumerator;
435
436 /**
437 * associated ike_sa_manager_t
438 */
439 private_ike_sa_manager_t *manager;
440
441 /**
442 * current segment index
443 */
444 u_int segment;
445
446 /**
447 * currently enumerating entry
448 */
449 entry_t *entry;
450
451 /**
452 * current table row index
453 */
454 u_int row;
455
456 /**
457 * enumerator for the current table row
458 */
459 enumerator_t *current;
460 };
461
462 METHOD(enumerator_t, enumerate, bool,
463 private_enumerator_t *this, entry_t **entry, u_int *segment)
464 {
465 if (this->entry)
466 {
467 this->entry->condvar->signal(this->entry->condvar);
468 this->entry = NULL;
469 }
470 while (this->segment < this->manager->segment_count)
471 {
472 while (this->row < this->manager->table_size)
473 {
474 if (this->current)
475 {
476 entry_t *item;
477
478 if (this->current->enumerate(this->current, &item))
479 {
480 *entry = this->entry = item;
481 *segment = this->segment;
482 return TRUE;
483 }
484 this->current->destroy(this->current);
485 this->current = NULL;
486 unlock_single_segment(this->manager, this->segment);
487 }
488 else
489 {
490 linked_list_t *list;
491
492 lock_single_segment(this->manager, this->segment);
493 if ((list = this->manager->ike_sa_table[this->row]) != NULL &&
494 list->get_count(list))
495 {
496 this->current = list->create_enumerator(list);
497 continue;
498 }
499 unlock_single_segment(this->manager, this->segment);
500 }
501 this->row += this->manager->segment_count;
502 }
503 this->segment++;
504 this->row = this->segment;
505 }
506 return FALSE;
507 }
508
509 METHOD(enumerator_t, enumerator_destroy, void,
510 private_enumerator_t *this)
511 {
512 if (this->entry)
513 {
514 this->entry->condvar->signal(this->entry->condvar);
515 }
516 if (this->current)
517 {
518 this->current->destroy(this->current);
519 unlock_single_segment(this->manager, this->segment);
520 }
521 free(this);
522 }
523
524 /**
525 * Creates an enumerator to enumerate the entries in the hash table.
526 */
527 static enumerator_t* create_table_enumerator(private_ike_sa_manager_t *this)
528 {
529 private_enumerator_t *enumerator;
530
531 INIT(enumerator,
532 .enumerator = {
533 .enumerate = (void*)_enumerate,
534 .destroy = _enumerator_destroy,
535 },
536 .manager = this,
537 );
538 return &enumerator->enumerator;
539 }
540
541 /**
542 * Put an entry into the hash table.
543 * Note: The caller has to unlock the returned segment.
544 */
545 static u_int put_entry(private_ike_sa_manager_t *this, entry_t *entry)
546 {
547 linked_list_t *list;
548 u_int row, segment;
549
550 row = ike_sa_id_hash(entry->ike_sa_id) & this->table_mask;
551 segment = row & this->segment_mask;
552
553 lock_single_segment(this, segment);
554 list = this->ike_sa_table[row];
555 if (!list)
556 {
557 list = this->ike_sa_table[row] = linked_list_create();
558 }
559 list->insert_last(list, entry);
560 this->segments[segment].count++;
561 return segment;
562 }
563
564 /**
565 * Remove an entry from the hash table.
566 * Note: The caller MUST have a lock on the segment of this entry.
567 */
568 static void remove_entry(private_ike_sa_manager_t *this, entry_t *entry)
569 {
570 linked_list_t *list;
571 u_int row, segment;
572
573 row = ike_sa_id_hash(entry->ike_sa_id) & this->table_mask;
574 segment = row & this->segment_mask;
575 list = this->ike_sa_table[row];
576 if (list)
577 {
578 entry_t *current;
579 enumerator_t *enumerator;
580
581 enumerator = list->create_enumerator(list);
582 while (enumerator->enumerate(enumerator, &current))
583 {
584 if (current == entry)
585 {
586 list->remove_at(list, enumerator);
587 this->segments[segment].count--;
588 break;
589 }
590 }
591 enumerator->destroy(enumerator);
592 }
593 }
594
595 /**
596 * Remove the entry at the current enumerator position.
597 */
598 static void remove_entry_at(private_enumerator_t *this)
599 {
600 this->entry = NULL;
601 if (this->current)
602 {
603 linked_list_t *list = this->manager->ike_sa_table[this->row];
604 list->remove_at(list, this->current);
605 this->manager->segments[this->segment].count--;
606 }
607 }
608
609 /**
610 * Find an entry using the provided match function to compare the entries for
611 * equality.
612 */
613 static status_t get_entry_by_match_function(private_ike_sa_manager_t *this,
614 ike_sa_id_t *ike_sa_id, entry_t **entry, u_int *segment,
615 linked_list_match_t match, void *p1, void *p2)
616 {
617 entry_t *current;
618 linked_list_t *list;
619 u_int row, seg;
620
621 row = ike_sa_id_hash(ike_sa_id) & this->table_mask;
622 seg = row & this->segment_mask;
623
624 lock_single_segment(this, seg);
625 list = this->ike_sa_table[row];
626 if (list)
627 {
628 if (list->find_first(list, match, (void**)&current, p1, p2) == SUCCESS)
629 {
630 *entry = current;
631 *segment = seg;
632 /* the locked segment has to be unlocked by the caller */
633 return SUCCESS;
634 }
635 }
636 unlock_single_segment(this, seg);
637 return NOT_FOUND;
638 }
639
640 /**
641 * Find an entry by ike_sa_id_t.
642 * Note: On SUCCESS, the caller has to unlock the segment.
643 */
644 static status_t get_entry_by_id(private_ike_sa_manager_t *this,
645 ike_sa_id_t *ike_sa_id, entry_t **entry, u_int *segment)
646 {
647 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
648 (linked_list_match_t)entry_match_by_id, ike_sa_id, NULL);
649 }
650
651 /**
652 * Find an entry by initiator SPI and IKE_SA_INIT hash.
653 * Note: On SUCCESS, the caller has to unlock the segment.
654 */
655 static status_t get_entry_by_hash(private_ike_sa_manager_t *this,
656 ike_sa_id_t *ike_sa_id, chunk_t hash, entry_t **entry, u_int *segment)
657 {
658 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
659 (linked_list_match_t)entry_match_by_hash, ike_sa_id, &hash);
660 }
661
662 /**
663 * Find an entry by IKE_SA pointer.
664 * Note: On SUCCESS, the caller has to unlock the segment.
665 */
666 static status_t get_entry_by_sa(private_ike_sa_manager_t *this,
667 ike_sa_id_t *ike_sa_id, ike_sa_t *ike_sa, entry_t **entry, u_int *segment)
668 {
669 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
670 (linked_list_match_t)entry_match_by_sa, ike_sa, NULL);
671 }
672
673 /**
674 * Wait until no other thread is using an IKE_SA, return FALSE if entry not
675 * acquirable.
676 */
677 static bool wait_for_entry(private_ike_sa_manager_t *this, entry_t *entry,
678 u_int segment)
679 {
680 if (entry->driveout_new_threads)
681 {
682 /* we are not allowed to get this */
683 return FALSE;
684 }
685 while (entry->checked_out && !entry->driveout_waiting_threads)
686 {
687 /* so wait until we can get it for us.
688 * we register us as waiting. */
689 entry->waiting_threads++;
690 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
691 entry->waiting_threads--;
692 }
693 /* hm, a deletion request forbids us to get this SA, get next one */
694 if (entry->driveout_waiting_threads)
695 {
696 /* we must signal here, others may be waiting on it, too */
697 entry->condvar->signal(entry->condvar);
698 return FALSE;
699 }
700 return TRUE;
701 }
702
703 /**
704 * Put a half-open SA into the hash table.
705 */
706 static void put_half_open(private_ike_sa_manager_t *this, entry_t *entry)
707 {
708 half_open_t *half_open = NULL;
709 linked_list_t *list;
710 chunk_t addr;
711 u_int row, segment;
712 rwlock_t *lock;
713
714 addr = entry->other->get_address(entry->other);
715 row = chunk_hash(addr) & this->table_mask;
716 segment = row & this->segment_mask;
717 lock = this->half_open_segments[segment].lock;
718 lock->write_lock(lock);
719 list = this->half_open_table[row];
720 if (list)
721 {
722 half_open_t *current;
723
724 if (list->find_first(list, (linked_list_match_t)half_open_match,
725 (void**)&current, &addr) == SUCCESS)
726 {
727 half_open = current;
728 half_open->count++;
729 this->half_open_segments[segment].count++;
730 }
731 }
732 else
733 {
734 list = this->half_open_table[row] = linked_list_create();
735 }
736
737 if (!half_open)
738 {
739 INIT(half_open,
740 .other = chunk_clone(addr),
741 .count = 1,
742 );
743 list->insert_last(list, half_open);
744 this->half_open_segments[segment].count++;
745 }
746 lock->unlock(lock);
747 }
748
749 /**
750 * Remove a half-open SA from the hash table.
751 */
752 static void remove_half_open(private_ike_sa_manager_t *this, entry_t *entry)
753 {
754 linked_list_t *list;
755 chunk_t addr;
756 u_int row, segment;
757 rwlock_t *lock;
758
759 addr = entry->other->get_address(entry->other);
760 row = chunk_hash(addr) & this->table_mask;
761 segment = row & this->segment_mask;
762 lock = this->half_open_segments[segment].lock;
763 lock->write_lock(lock);
764 list = this->half_open_table[row];
765 if (list)
766 {
767 half_open_t *current;
768 enumerator_t *enumerator;
769
770 enumerator = list->create_enumerator(list);
771 while (enumerator->enumerate(enumerator, &current))
772 {
773 if (half_open_match(current, &addr))
774 {
775 if (--current->count == 0)
776 {
777 list->remove_at(list, enumerator);
778 half_open_destroy(current);
779 }
780 this->half_open_segments[segment].count--;
781 break;
782 }
783 }
784 enumerator->destroy(enumerator);
785 }
786 lock->unlock(lock);
787 }
788
789 /**
790 * Put an SA between two peers into the hash table.
791 */
792 static void put_connected_peers(private_ike_sa_manager_t *this, entry_t *entry)
793 {
794 connected_peers_t *connected_peers = NULL;
795 chunk_t my_id, other_id;
796 linked_list_t *list;
797 u_int row, segment;
798 rwlock_t *lock;
799
800 my_id = entry->my_id->get_encoding(entry->my_id);
801 other_id = entry->other_id->get_encoding(entry->other_id);
802 row = chunk_hash_inc(other_id, chunk_hash(my_id)) & this->table_mask;
803 segment = row & this->segment_mask;
804 lock = this->connected_peers_segments[segment].lock;
805 lock->write_lock(lock);
806 list = this->connected_peers_table[row];
807 if (list)
808 {
809 connected_peers_t *current;
810
811 if (list->find_first(list, (linked_list_match_t)connected_peers_match,
812 (void**)&current, entry->my_id, entry->other_id,
813 (uintptr_t)entry->other->get_family(entry->other)) == SUCCESS)
814 {
815 connected_peers = current;
816 if (connected_peers->sas->find_first(connected_peers->sas,
817 (linked_list_match_t)entry->ike_sa_id->equals,
818 NULL, entry->ike_sa_id) == SUCCESS)
819 {
820 lock->unlock(lock);
821 return;
822 }
823 }
824 }
825 else
826 {
827 list = this->connected_peers_table[row] = linked_list_create();
828 }
829
830 if (!connected_peers)
831 {
832 INIT(connected_peers,
833 .my_id = entry->my_id->clone(entry->my_id),
834 .other_id = entry->other_id->clone(entry->other_id),
835 .family = entry->other->get_family(entry->other),
836 .sas = linked_list_create(),
837 );
838 list->insert_last(list, connected_peers);
839 }
840 connected_peers->sas->insert_last(connected_peers->sas,
841 entry->ike_sa_id->clone(entry->ike_sa_id));
842 this->connected_peers_segments[segment].count++;
843 lock->unlock(lock);
844 }
845
846 /**
847 * Remove an SA between two peers from the hash table.
848 */
849 static void remove_connected_peers(private_ike_sa_manager_t *this, entry_t *entry)
850 {
851 chunk_t my_id, other_id;
852 linked_list_t *list;
853 u_int row, segment;
854 rwlock_t *lock;
855
856 my_id = entry->my_id->get_encoding(entry->my_id);
857 other_id = entry->other_id->get_encoding(entry->other_id);
858 row = chunk_hash_inc(other_id, chunk_hash(my_id)) & this->table_mask;
859 segment = row & this->segment_mask;
860
861 lock = this->connected_peers_segments[segment].lock;
862 lock->write_lock(lock);
863 list = this->connected_peers_table[row];
864 if (list)
865 {
866 connected_peers_t *current;
867 enumerator_t *enumerator;
868
869 enumerator = list->create_enumerator(list);
870 while (enumerator->enumerate(enumerator, &current))
871 {
872 if (connected_peers_match(current, entry->my_id, entry->other_id,
873 (uintptr_t)entry->other->get_family(entry->other)))
874 {
875 ike_sa_id_t *ike_sa_id;
876 enumerator_t *inner;
877
878 inner = current->sas->create_enumerator(current->sas);
879 while (inner->enumerate(inner, &ike_sa_id))
880 {
881 if (ike_sa_id->equals(ike_sa_id, entry->ike_sa_id))
882 {
883 current->sas->remove_at(current->sas, inner);
884 ike_sa_id->destroy(ike_sa_id);
885 this->connected_peers_segments[segment].count--;
886 break;
887 }
888 }
889 inner->destroy(inner);
890 if (current->sas->get_count(current->sas) == 0)
891 {
892 list->remove_at(list, enumerator);
893 connected_peers_destroy(current);
894 }
895 break;
896 }
897 }
898 enumerator->destroy(enumerator);
899 }
900 lock->unlock(lock);
901 }
902
903 /**
904 * Get a random SPI for new IKE_SAs
905 */
906 static u_int64_t get_spi(private_ike_sa_manager_t *this)
907 {
908 u_int64_t spi = 0;
909
910 if (this->rng)
911 {
912 this->rng->get_bytes(this->rng, sizeof(spi), (u_int8_t*)&spi);
913 }
914 return spi;
915 }
916
917 METHOD(ike_sa_manager_t, checkout, ike_sa_t*,
918 private_ike_sa_manager_t *this, ike_sa_id_t *ike_sa_id)
919 {
920 ike_sa_t *ike_sa = NULL;
921 entry_t *entry;
922 u_int segment;
923
924 DBG2(DBG_MGR, "checkout IKE_SA");
925
926 if (get_entry_by_id(this, ike_sa_id, &entry, &segment) == SUCCESS)
927 {
928 if (wait_for_entry(this, entry, segment))
929 {
930 entry->checked_out = TRUE;
931 ike_sa = entry->ike_sa;
932 DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
933 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
934 }
935 unlock_single_segment(this, segment);
936 }
937 charon->bus->set_sa(charon->bus, ike_sa);
938 return ike_sa;
939 }
940
941 METHOD(ike_sa_manager_t, checkout_new, ike_sa_t*,
942 private_ike_sa_manager_t* this, ike_version_t version, bool initiator)
943 {
944 ike_sa_id_t *ike_sa_id;
945 ike_sa_t *ike_sa;
946
947 if (initiator)
948 {
949 ike_sa_id = ike_sa_id_create(get_spi(this), 0, TRUE);
950 }
951 else
952 {
953 ike_sa_id = ike_sa_id_create(0, get_spi(this), FALSE);
954 }
955 ike_sa = ike_sa_create(ike_sa_id, initiator, version);
956 ike_sa_id->destroy(ike_sa_id);
957
958 if (ike_sa)
959 {
960 DBG2(DBG_MGR, "created IKE_SA %s[%u]", ike_sa->get_name(ike_sa),
961 ike_sa->get_unique_id(ike_sa));
962 }
963 return ike_sa;
964 }
965
966 METHOD(ike_sa_manager_t, checkout_by_message, ike_sa_t*,
967 private_ike_sa_manager_t* this, message_t *message)
968 {
969 u_int segment;
970 entry_t *entry;
971 ike_sa_t *ike_sa = NULL;
972 ike_sa_id_t *id;
973 ike_version_t ike_version;
974 bool is_init = FALSE;
975
976 id = message->get_ike_sa_id(message);
977 id = id->clone(id);
978 id->switch_initiator(id);
979
980 DBG2(DBG_MGR, "checkout IKE_SA by message");
981
982 if (id->get_responder_spi(id) == 0)
983 {
984 if (message->get_major_version(message) == IKEV2_MAJOR_VERSION)
985 {
986 if (message->get_exchange_type(message) == IKE_SA_INIT &&
987 message->get_request(message))
988 {
989 ike_version = IKEV2;
990 is_init = TRUE;
991 }
992 }
993 else
994 {
995 if (message->get_exchange_type(message) == ID_PROT ||
996 message->get_exchange_type(message) == AGGRESSIVE)
997 {
998 ike_version = IKEV1;
999 is_init = TRUE;
1000 }
1001 }
1002 }
1003
1004 if (is_init && this->hasher)
1005 {
1006 /* First request. Check for an IKE_SA with such a message hash. */
1007 chunk_t hash;
1008
1009 this->hasher->allocate_hash(this->hasher,
1010 message->get_packet_data(message), &hash);
1011
1012 if (get_entry_by_hash(this, id, hash, &entry, &segment) == SUCCESS)
1013 {
1014 if (message->get_exchange_type(message) == IKE_SA_INIT &&
1015 entry->message_id == 0)
1016 {
1017 unlock_single_segment(this, segment);
1018 chunk_free(&hash);
1019 id->destroy(id);
1020 DBG1(DBG_MGR, "ignoring IKE_SA_INIT, already processing");
1021 return NULL;
1022 }
1023 else if (wait_for_entry(this, entry, segment))
1024 {
1025 entry->checked_out = TRUE;
1026 entry->message_id = message->get_message_id(message);
1027 ike_sa = entry->ike_sa;
1028 DBG2(DBG_MGR, "IKE_SA %s[%u] checked out by hash",
1029 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1030 chunk_free(&hash);
1031 }
1032 unlock_single_segment(this, segment);
1033 }
1034
1035 if (ike_sa == NULL)
1036 {
1037 /* no IKE_SA found, create a new one */
1038 id->set_responder_spi(id, get_spi(this));
1039 ike_sa = ike_sa_create(id, FALSE, ike_version);
1040 if (ike_sa)
1041 {
1042 entry = entry_create();
1043 /* a new SA checked out by message is a responder SA */
1044 entry->ike_sa = ike_sa;
1045 entry->ike_sa_id = id->clone(id);
1046
1047 segment = put_entry(this, entry);
1048 entry->checked_out = TRUE;
1049 unlock_single_segment(this, segment);
1050
1051 entry->message_id = message->get_message_id(message);
1052 entry->init_hash = hash;
1053
1054 DBG2(DBG_MGR, "created IKE_SA %s[%u]",
1055 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1056 }
1057 }
1058 if (ike_sa == NULL)
1059 {
1060 chunk_free(&hash);
1061 DBG1(DBG_MGR, "ignoring message, no such IKE_SA");
1062 }
1063 id->destroy(id);
1064 charon->bus->set_sa(charon->bus, ike_sa);
1065 return ike_sa;
1066 }
1067
1068 if (get_entry_by_id(this, id, &entry, &segment) == SUCCESS)
1069 {
1070 /* only check out in IKEv2 if we are not already processing it */
1071 if (message->get_request(message) &&
1072 message->get_message_id(message) == entry->message_id)
1073 {
1074 DBG1(DBG_MGR, "ignoring request with ID %u, already processing",
1075 entry->message_id);
1076 }
1077 else if (wait_for_entry(this, entry, segment))
1078 {
1079 ike_sa_id_t *ike_id;
1080
1081 ike_id = entry->ike_sa->get_id(entry->ike_sa);
1082 entry->checked_out = TRUE;
1083 entry->message_id = message->get_message_id(message);
1084 if (ike_id->get_responder_spi(ike_id) == 0)
1085 {
1086 ike_id->set_responder_spi(ike_id, id->get_responder_spi(id));
1087 }
1088 ike_sa = entry->ike_sa;
1089 DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
1090 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1091 }
1092 unlock_single_segment(this, segment);
1093 }
1094 id->destroy(id);
1095 charon->bus->set_sa(charon->bus, ike_sa);
1096 return ike_sa;
1097 }
1098
1099 METHOD(ike_sa_manager_t, checkout_by_config, ike_sa_t*,
1100 private_ike_sa_manager_t *this, peer_cfg_t *peer_cfg)
1101 {
1102 enumerator_t *enumerator;
1103 entry_t *entry;
1104 ike_sa_t *ike_sa = NULL;
1105 peer_cfg_t *current_peer;
1106 ike_cfg_t *current_ike;
1107 u_int segment;
1108
1109 DBG2(DBG_MGR, "checkout IKE_SA by config");
1110
1111 if (!this->reuse_ikesa)
1112 { /* IKE_SA reuse disable by config */
1113 ike_sa = checkout_new(this, peer_cfg->get_ike_version(peer_cfg), TRUE);
1114 charon->bus->set_sa(charon->bus, ike_sa);
1115 return ike_sa;
1116 }
1117
1118 enumerator = create_table_enumerator(this);
1119 while (enumerator->enumerate(enumerator, &entry, &segment))
1120 {
1121 if (!wait_for_entry(this, entry, segment))
1122 {
1123 continue;
1124 }
1125 if (entry->ike_sa->get_state(entry->ike_sa) == IKE_DELETING)
1126 { /* skip IKE_SAs which are not usable */
1127 continue;
1128 }
1129
1130 current_peer = entry->ike_sa->get_peer_cfg(entry->ike_sa);
1131 if (current_peer && current_peer->equals(current_peer, peer_cfg))
1132 {
1133 current_ike = current_peer->get_ike_cfg(current_peer);
1134 if (current_ike->equals(current_ike, peer_cfg->get_ike_cfg(peer_cfg)))
1135 {
1136 entry->checked_out = TRUE;
1137 ike_sa = entry->ike_sa;
1138 DBG2(DBG_MGR, "found existing IKE_SA %u with a '%s' config",
1139 ike_sa->get_unique_id(ike_sa),
1140 current_peer->get_name(current_peer));
1141 break;
1142 }
1143 }
1144 }
1145 enumerator->destroy(enumerator);
1146
1147 if (!ike_sa)
1148 { /* no IKE_SA using such a config, hand out a new */
1149 ike_sa = checkout_new(this, peer_cfg->get_ike_version(peer_cfg), TRUE);
1150 }
1151 charon->bus->set_sa(charon->bus, ike_sa);
1152 return ike_sa;
1153 }
1154
1155 METHOD(ike_sa_manager_t, checkout_by_id, ike_sa_t*,
1156 private_ike_sa_manager_t *this, u_int32_t id, bool child)
1157 {
1158 enumerator_t *enumerator, *children;
1159 entry_t *entry;
1160 ike_sa_t *ike_sa = NULL;
1161 child_sa_t *child_sa;
1162 u_int segment;
1163
1164 DBG2(DBG_MGR, "checkout IKE_SA by ID");
1165
1166 enumerator = create_table_enumerator(this);
1167 while (enumerator->enumerate(enumerator, &entry, &segment))
1168 {
1169 if (wait_for_entry(this, entry, segment))
1170 {
1171 /* look for a child with such a reqid ... */
1172 if (child)
1173 {
1174 children = entry->ike_sa->create_child_sa_enumerator(entry->ike_sa);
1175 while (children->enumerate(children, (void**)&child_sa))
1176 {
1177 if (child_sa->get_reqid(child_sa) == id)
1178 {
1179 ike_sa = entry->ike_sa;
1180 break;
1181 }
1182 }
1183 children->destroy(children);
1184 }
1185 else /* ... or for a IKE_SA with such a unique id */
1186 {
1187 if (entry->ike_sa->get_unique_id(entry->ike_sa) == id)
1188 {
1189 ike_sa = entry->ike_sa;
1190 }
1191 }
1192 /* got one, return */
1193 if (ike_sa)
1194 {
1195 entry->checked_out = TRUE;
1196 DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
1197 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1198 break;
1199 }
1200 }
1201 }
1202 enumerator->destroy(enumerator);
1203
1204 charon->bus->set_sa(charon->bus, ike_sa);
1205 return ike_sa;
1206 }
1207
1208 METHOD(ike_sa_manager_t, checkout_by_name, ike_sa_t*,
1209 private_ike_sa_manager_t *this, char *name, bool child)
1210 {
1211 enumerator_t *enumerator, *children;
1212 entry_t *entry;
1213 ike_sa_t *ike_sa = NULL;
1214 child_sa_t *child_sa;
1215 u_int segment;
1216
1217 enumerator = create_table_enumerator(this);
1218 while (enumerator->enumerate(enumerator, &entry, &segment))
1219 {
1220 if (wait_for_entry(this, entry, segment))
1221 {
1222 /* look for a child with such a policy name ... */
1223 if (child)
1224 {
1225 children = entry->ike_sa->create_child_sa_enumerator(entry->ike_sa);
1226 while (children->enumerate(children, (void**)&child_sa))
1227 {
1228 if (streq(child_sa->get_name(child_sa), name))
1229 {
1230 ike_sa = entry->ike_sa;
1231 break;
1232 }
1233 }
1234 children->destroy(children);
1235 }
1236 else /* ... or for a IKE_SA with such a connection name */
1237 {
1238 if (streq(entry->ike_sa->get_name(entry->ike_sa), name))
1239 {
1240 ike_sa = entry->ike_sa;
1241 }
1242 }
1243 /* got one, return */
1244 if (ike_sa)
1245 {
1246 entry->checked_out = TRUE;
1247 DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
1248 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1249 break;
1250 }
1251 }
1252 }
1253 enumerator->destroy(enumerator);
1254
1255 charon->bus->set_sa(charon->bus, ike_sa);
1256 return ike_sa;
1257 }
1258
1259 /**
1260 * enumerator filter function, waiting variant
1261 */
1262 static bool enumerator_filter_wait(private_ike_sa_manager_t *this,
1263 entry_t **in, ike_sa_t **out, u_int *segment)
1264 {
1265 if (wait_for_entry(this, *in, *segment))
1266 {
1267 *out = (*in)->ike_sa;
1268 return TRUE;
1269 }
1270 return FALSE;
1271 }
1272
1273 /**
1274 * enumerator filter function, skipping variant
1275 */
1276 static bool enumerator_filter_skip(private_ike_sa_manager_t *this,
1277 entry_t **in, ike_sa_t **out, u_int *segment)
1278 {
1279 if (!(*in)->driveout_new_threads &&
1280 !(*in)->driveout_waiting_threads &&
1281 !(*in)->checked_out)
1282 {
1283 *out = (*in)->ike_sa;
1284 return TRUE;
1285 }
1286 return FALSE;
1287 }
1288
1289 METHOD(ike_sa_manager_t, create_enumerator, enumerator_t*,
1290 private_ike_sa_manager_t* this, bool wait)
1291 {
1292 return enumerator_create_filter(create_table_enumerator(this),
1293 wait ? (void*)enumerator_filter_wait : (void*)enumerator_filter_skip,
1294 this, NULL);
1295 }
1296
1297 METHOD(ike_sa_manager_t, checkin, void,
1298 private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
1299 {
1300 /* to check the SA back in, we look for the pointer of the ike_sa
1301 * in all entries.
1302 * The lookup is done by initiator SPI, so even if the SPI has changed (e.g.
1303 * on reception of a IKE_SA_INIT response) the lookup will work but
1304 * updating of the SPI MAY be necessary...
1305 */
1306 entry_t *entry;
1307 ike_sa_id_t *ike_sa_id;
1308 host_t *other;
1309 identification_t *my_id, *other_id;
1310 u_int segment;
1311
1312 ike_sa_id = ike_sa->get_id(ike_sa);
1313 my_id = ike_sa->get_my_id(ike_sa);
1314 other_id = ike_sa->get_other_id(ike_sa);
1315 other = ike_sa->get_other_host(ike_sa);
1316
1317 DBG2(DBG_MGR, "checkin IKE_SA %s[%u]", ike_sa->get_name(ike_sa),
1318 ike_sa->get_unique_id(ike_sa));
1319
1320 /* look for the entry */
1321 if (get_entry_by_sa(this, ike_sa_id, ike_sa, &entry, &segment) == SUCCESS)
1322 {
1323 /* ike_sa_id must be updated */
1324 entry->ike_sa_id->replace_values(entry->ike_sa_id, ike_sa->get_id(ike_sa));
1325 /* signal waiting threads */
1326 entry->checked_out = FALSE;
1327 entry->message_id = -1;
1328 /* check if this SA is half-open */
1329 if (entry->half_open && ike_sa->get_state(ike_sa) != IKE_CONNECTING)
1330 {
1331 /* not half open anymore */
1332 entry->half_open = FALSE;
1333 remove_half_open(this, entry);
1334 }
1335 else if (entry->half_open && !other->ip_equals(other, entry->other))
1336 {
1337 /* the other host's IP has changed, we must update the hash table */
1338 remove_half_open(this, entry);
1339 DESTROY_IF(entry->other);
1340 entry->other = other->clone(other);
1341 put_half_open(this, entry);
1342 }
1343 else if (!entry->half_open &&
1344 !entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
1345 ike_sa->get_state(ike_sa) == IKE_CONNECTING)
1346 {
1347 /* this is a new half-open SA */
1348 entry->half_open = TRUE;
1349 entry->other = other->clone(other);
1350 put_half_open(this, entry);
1351 }
1352 DBG2(DBG_MGR, "check-in of IKE_SA successful.");
1353 entry->condvar->signal(entry->condvar);
1354 }
1355 else
1356 {
1357 entry = entry_create();
1358 entry->ike_sa_id = ike_sa_id->clone(ike_sa_id);
1359 entry->ike_sa = ike_sa;
1360 segment = put_entry(this, entry);
1361 }
1362
1363 /* apply identities for duplicate test */
1364 if (ike_sa->get_state(ike_sa) == IKE_ESTABLISHED &&
1365 entry->my_id == NULL && entry->other_id == NULL)
1366 {
1367 if (ike_sa->get_version(ike_sa) == IKEV1)
1368 {
1369 /* If authenticated and received INITIAL_CONTACT,
1370 * delete any existing IKE_SAs with that peer. */
1371 if (ike_sa->has_condition(ike_sa, COND_INIT_CONTACT_SEEN))
1372 {
1373 this->public.check_uniqueness(&this->public, ike_sa, TRUE);
1374 ike_sa->set_condition(ike_sa, COND_INIT_CONTACT_SEEN, FALSE);
1375 }
1376 }
1377
1378 entry->my_id = my_id->clone(my_id);
1379 entry->other_id = other_id->clone(other_id);
1380 if (!entry->other)
1381 {
1382 entry->other = other->clone(other);
1383 }
1384 put_connected_peers(this, entry);
1385 }
1386
1387 unlock_single_segment(this, segment);
1388
1389 charon->bus->set_sa(charon->bus, NULL);
1390 }
1391
1392 METHOD(ike_sa_manager_t, checkin_and_destroy, void,
1393 private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
1394 {
1395 /* deletion is a bit complex, we must ensure that no thread is waiting for
1396 * this SA.
1397 * We take this SA from the table, and start signaling while threads
1398 * are in the condvar.
1399 */
1400 entry_t *entry;
1401 ike_sa_id_t *ike_sa_id;
1402 u_int segment;
1403
1404 ike_sa_id = ike_sa->get_id(ike_sa);
1405
1406 DBG2(DBG_MGR, "checkin and destroy IKE_SA %s[%u]", ike_sa->get_name(ike_sa),
1407 ike_sa->get_unique_id(ike_sa));
1408
1409 if (get_entry_by_sa(this, ike_sa_id, ike_sa, &entry, &segment) == SUCCESS)
1410 {
1411 /* drive out waiting threads, as we are in hurry */
1412 entry->driveout_waiting_threads = TRUE;
1413 /* mark it, so no new threads can get this entry */
1414 entry->driveout_new_threads = TRUE;
1415 /* wait until all workers have done their work */
1416 while (entry->waiting_threads)
1417 {
1418 /* wake up all */
1419 entry->condvar->broadcast(entry->condvar);
1420 /* they will wake us again when their work is done */
1421 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
1422 }
1423 remove_entry(this, entry);
1424 unlock_single_segment(this, segment);
1425
1426 if (entry->half_open)
1427 {
1428 remove_half_open(this, entry);
1429 }
1430 if (entry->my_id && entry->other_id)
1431 {
1432 remove_connected_peers(this, entry);
1433 }
1434
1435 entry_destroy(entry);
1436
1437 DBG2(DBG_MGR, "check-in and destroy of IKE_SA successful");
1438 }
1439 else
1440 {
1441 DBG1(DBG_MGR, "tried to check-in and delete nonexisting IKE_SA");
1442 ike_sa->destroy(ike_sa);
1443 }
1444 charon->bus->set_sa(charon->bus, NULL);
1445 }
1446
1447 METHOD(ike_sa_manager_t, check_uniqueness, bool,
1448 private_ike_sa_manager_t *this, ike_sa_t *ike_sa, bool force_replace)
1449 {
1450 bool cancel = FALSE;
1451 peer_cfg_t *peer_cfg;
1452 unique_policy_t policy;
1453 linked_list_t *list, *duplicate_ids = NULL;
1454 enumerator_t *enumerator;
1455 ike_sa_id_t *duplicate_id = NULL;
1456 identification_t *me, *other;
1457 u_int row, segment;
1458 rwlock_t *lock;
1459
1460 peer_cfg = ike_sa->get_peer_cfg(ike_sa);
1461 policy = peer_cfg->get_unique_policy(peer_cfg);
1462 if (policy == UNIQUE_NO && !force_replace)
1463 {
1464 return FALSE;
1465 }
1466
1467 me = ike_sa->get_my_id(ike_sa);
1468 other = ike_sa->get_other_id(ike_sa);
1469
1470 row = chunk_hash_inc(other->get_encoding(other),
1471 chunk_hash(me->get_encoding(me))) & this->table_mask;
1472 segment = row & this->segment_mask;
1473
1474 lock = this->connected_peers_segments[segment & this->segment_mask].lock;
1475 lock->read_lock(lock);
1476 list = this->connected_peers_table[row];
1477 if (list)
1478 {
1479 connected_peers_t *current;
1480 host_t *other_host;
1481
1482 other_host = ike_sa->get_other_host(ike_sa);
1483 if (list->find_first(list, (linked_list_match_t)connected_peers_match,
1484 (void**)&current, me, other,
1485 (uintptr_t)other_host->get_family(other_host)) == SUCCESS)
1486 {
1487 /* clone the list, so we can release the lock */
1488 duplicate_ids = current->sas->clone_offset(current->sas,
1489 offsetof(ike_sa_id_t, clone));
1490 }
1491 }
1492 lock->unlock(lock);
1493
1494 if (!duplicate_ids)
1495 {
1496 return FALSE;
1497 }
1498
1499 enumerator = duplicate_ids->create_enumerator(duplicate_ids);
1500 while (enumerator->enumerate(enumerator, &duplicate_id))
1501 {
1502 status_t status = SUCCESS;
1503 ike_sa_t *duplicate;
1504
1505 duplicate = checkout(this, duplicate_id);
1506 if (!duplicate)
1507 {
1508 continue;
1509 }
1510 if (force_replace)
1511 {
1512 DBG1(DBG_IKE, "destroying duplicate IKE_SA for peer '%Y', "
1513 "received INITIAL_CONTACT", other);
1514 checkin_and_destroy(this, duplicate);
1515 continue;
1516 }
1517 peer_cfg = duplicate->get_peer_cfg(duplicate);
1518 if (peer_cfg && peer_cfg->equals(peer_cfg, ike_sa->get_peer_cfg(ike_sa)))
1519 {
1520 switch (duplicate->get_state(duplicate))
1521 {
1522 case IKE_ESTABLISHED:
1523 case IKE_REKEYING:
1524 switch (policy)
1525 {
1526 case UNIQUE_REPLACE:
1527 DBG1(DBG_IKE, "deleting duplicate IKE_SA for peer "
1528 "'%Y' due to uniqueness policy", other);
1529 status = duplicate->delete(duplicate);
1530 break;
1531 case UNIQUE_KEEP:
1532 cancel = TRUE;
1533 /* we keep the first IKE_SA and delete all
1534 * other duplicates that might exist */
1535 policy = UNIQUE_REPLACE;
1536 break;
1537 default:
1538 break;
1539 }
1540 break;
1541 default:
1542 break;
1543 }
1544 }
1545 if (status == DESTROY_ME)
1546 {
1547 checkin_and_destroy(this, duplicate);
1548 }
1549 else
1550 {
1551 checkin(this, duplicate);
1552 }
1553 }
1554 enumerator->destroy(enumerator);
1555 duplicate_ids->destroy_offset(duplicate_ids, offsetof(ike_sa_id_t, destroy));
1556 /* reset thread's current IKE_SA after checkin */
1557 charon->bus->set_sa(charon->bus, ike_sa);
1558 return cancel;
1559 }
1560
1561 METHOD(ike_sa_manager_t, has_contact, bool,
1562 private_ike_sa_manager_t *this, identification_t *me,
1563 identification_t *other, int family)
1564 {
1565 linked_list_t *list;
1566 u_int row, segment;
1567 rwlock_t *lock;
1568 bool found = FALSE;
1569
1570 row = chunk_hash_inc(other->get_encoding(other),
1571 chunk_hash(me->get_encoding(me))) & this->table_mask;
1572 segment = row & this->segment_mask;
1573 lock = this->connected_peers_segments[segment & this->segment_mask].lock;
1574 lock->read_lock(lock);
1575 list = this->connected_peers_table[row];
1576 if (list)
1577 {
1578 if (list->find_first(list, (linked_list_match_t)connected_peers_match,
1579 NULL, me, other, family) == SUCCESS)
1580 {
1581 found = TRUE;
1582 }
1583 }
1584 lock->unlock(lock);
1585
1586 return found;
1587 }
1588
1589 METHOD(ike_sa_manager_t, get_count, u_int,
1590 private_ike_sa_manager_t *this)
1591 {
1592 u_int segment, count = 0;
1593 mutex_t *mutex;
1594
1595 for (segment = 0; segment < this->segment_count; segment++)
1596 {
1597 mutex = this->segments[segment & this->segment_mask].mutex;
1598 mutex->lock(mutex);
1599 count += this->segments[segment].count;
1600 mutex->unlock(mutex);
1601 }
1602 return count;
1603 }
1604
1605 METHOD(ike_sa_manager_t, get_half_open_count, u_int,
1606 private_ike_sa_manager_t *this, host_t *ip)
1607 {
1608 linked_list_t *list;
1609 u_int segment, row;
1610 rwlock_t *lock;
1611 chunk_t addr;
1612 u_int count = 0;
1613
1614 if (ip)
1615 {
1616 addr = ip->get_address(ip);
1617 row = chunk_hash(addr) & this->table_mask;
1618 segment = row & this->segment_mask;
1619 lock = this->half_open_segments[segment & this->segment_mask].lock;
1620 lock->read_lock(lock);
1621 if ((list = this->half_open_table[row]) != NULL)
1622 {
1623 half_open_t *current;
1624
1625 if (list->find_first(list, (linked_list_match_t)half_open_match,
1626 (void**)&current, &addr) == SUCCESS)
1627 {
1628 count = current->count;
1629 }
1630 }
1631 lock->unlock(lock);
1632 }
1633 else
1634 {
1635 for (segment = 0; segment < this->segment_count; segment++)
1636 {
1637 lock = this->half_open_segments[segment & this->segment_mask].lock;
1638 lock->read_lock(lock);
1639 count += this->half_open_segments[segment].count;
1640 lock->unlock(lock);
1641 }
1642 }
1643 return count;
1644 }
1645
1646 METHOD(ike_sa_manager_t, flush, void,
1647 private_ike_sa_manager_t *this)
1648 {
1649 /* destroy all list entries */
1650 enumerator_t *enumerator;
1651 entry_t *entry;
1652 u_int segment;
1653
1654 lock_all_segments(this);
1655 DBG2(DBG_MGR, "going to destroy IKE_SA manager and all managed IKE_SA's");
1656 /* Step 1: drive out all waiting threads */
1657 DBG2(DBG_MGR, "set driveout flags for all stored IKE_SA's");
1658 enumerator = create_table_enumerator(this);
1659 while (enumerator->enumerate(enumerator, &entry, &segment))
1660 {
1661 /* do not accept new threads, drive out waiting threads */
1662 entry->driveout_new_threads = TRUE;
1663 entry->driveout_waiting_threads = TRUE;
1664 }
1665 enumerator->destroy(enumerator);
1666 DBG2(DBG_MGR, "wait for all threads to leave IKE_SA's");
1667 /* Step 2: wait until all are gone */
1668 enumerator = create_table_enumerator(this);
1669 while (enumerator->enumerate(enumerator, &entry, &segment))
1670 {
1671 while (entry->waiting_threads || entry->checked_out)
1672 {
1673 /* wake up all */
1674 entry->condvar->broadcast(entry->condvar);
1675 /* go sleeping until they are gone */
1676 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
1677 }
1678 }
1679 enumerator->destroy(enumerator);
1680 DBG2(DBG_MGR, "delete all IKE_SA's");
1681 /* Step 3: initiate deletion of all IKE_SAs */
1682 enumerator = create_table_enumerator(this);
1683 while (enumerator->enumerate(enumerator, &entry, &segment))
1684 {
1685 charon->bus->set_sa(charon->bus, entry->ike_sa);
1686 /* as the delete never gets processed, fire down events */
1687 switch (entry->ike_sa->get_state(entry->ike_sa))
1688 {
1689 case IKE_ESTABLISHED:
1690 case IKE_REKEYING:
1691 case IKE_DELETING:
1692 charon->bus->ike_updown(charon->bus, entry->ike_sa, FALSE);
1693 break;
1694 default:
1695 break;
1696 }
1697 entry->ike_sa->delete(entry->ike_sa);
1698 }
1699 enumerator->destroy(enumerator);
1700
1701 DBG2(DBG_MGR, "destroy all entries");
1702 /* Step 4: destroy all entries */
1703 enumerator = create_table_enumerator(this);
1704 while (enumerator->enumerate(enumerator, &entry, &segment))
1705 {
1706 charon->bus->set_sa(charon->bus, entry->ike_sa);
1707 if (entry->half_open)
1708 {
1709 remove_half_open(this, entry);
1710 }
1711 if (entry->my_id && entry->other_id)
1712 {
1713 remove_connected_peers(this, entry);
1714 }
1715 remove_entry_at((private_enumerator_t*)enumerator);
1716 entry_destroy(entry);
1717 }
1718 enumerator->destroy(enumerator);
1719 charon->bus->set_sa(charon->bus, NULL);
1720 unlock_all_segments(this);
1721
1722 this->rng->destroy(this->rng);
1723 this->rng = NULL;
1724 this->hasher->destroy(this->hasher);
1725 this->hasher = NULL;
1726 }
1727
1728 METHOD(ike_sa_manager_t, destroy, void,
1729 private_ike_sa_manager_t *this)
1730 {
1731 u_int i;
1732
1733 for (i = 0; i < this->table_size; i++)
1734 {
1735 DESTROY_IF(this->ike_sa_table[i]);
1736 DESTROY_IF(this->half_open_table[i]);
1737 DESTROY_IF(this->connected_peers_table[i]);
1738 }
1739 free(this->ike_sa_table);
1740 free(this->half_open_table);
1741 free(this->connected_peers_table);
1742 for (i = 0; i < this->segment_count; i++)
1743 {
1744 this->segments[i].mutex->destroy(this->segments[i].mutex);
1745 this->half_open_segments[i].lock->destroy(this->half_open_segments[i].lock);
1746 this->connected_peers_segments[i].lock->destroy(this->connected_peers_segments[i].lock);
1747 }
1748 free(this->segments);
1749 free(this->half_open_segments);
1750 free(this->connected_peers_segments);
1751
1752 free(this);
1753 }
1754
1755 /**
1756 * This function returns the next-highest power of two for the given number.
1757 * The algorithm works by setting all bits on the right-hand side of the most
1758 * significant 1 to 1 and then increments the whole number so it rolls over
1759 * to the nearest power of two. Note: returns 0 for n == 0
1760 */
1761 static u_int get_nearest_powerof2(u_int n)
1762 {
1763 u_int i;
1764
1765 --n;
1766 for (i = 1; i < sizeof(u_int) * 8; i <<= 1)
1767 {
1768 n |= n >> i;
1769 }
1770 return ++n;
1771 }
1772
1773 /*
1774 * Described in header.
1775 */
1776 ike_sa_manager_t *ike_sa_manager_create()
1777 {
1778 private_ike_sa_manager_t *this;
1779 u_int i;
1780
1781 INIT(this,
1782 .public = {
1783 .checkout = _checkout,
1784 .checkout_new = _checkout_new,
1785 .checkout_by_message = _checkout_by_message,
1786 .checkout_by_config = _checkout_by_config,
1787 .checkout_by_id = _checkout_by_id,
1788 .checkout_by_name = _checkout_by_name,
1789 .check_uniqueness = _check_uniqueness,
1790 .has_contact = _has_contact,
1791 .create_enumerator = _create_enumerator,
1792 .checkin = _checkin,
1793 .checkin_and_destroy = _checkin_and_destroy,
1794 .get_count = _get_count,
1795 .get_half_open_count = _get_half_open_count,
1796 .flush = _flush,
1797 .destroy = _destroy,
1798 },
1799 );
1800
1801 this->hasher = lib->crypto->create_hasher(lib->crypto, HASH_PREFERRED);
1802 if (this->hasher == NULL)
1803 {
1804 DBG1(DBG_MGR, "manager initialization failed, no hasher supported");
1805 free(this);
1806 return NULL;
1807 }
1808 this->rng = lib->crypto->create_rng(lib->crypto, RNG_WEAK);
1809 if (this->rng == NULL)
1810 {
1811 DBG1(DBG_MGR, "manager initialization failed, no RNG supported");
1812 this->hasher->destroy(this->hasher);
1813 free(this);
1814 return NULL;
1815 }
1816
1817 this->table_size = get_nearest_powerof2(lib->settings->get_int(lib->settings,
1818 "charon.ikesa_table_size", DEFAULT_HASHTABLE_SIZE));
1819 this->table_size = max(1, min(this->table_size, MAX_HASHTABLE_SIZE));
1820 this->table_mask = this->table_size - 1;
1821
1822 this->segment_count = get_nearest_powerof2(lib->settings->get_int(lib->settings,
1823 "charon.ikesa_table_segments", DEFAULT_SEGMENT_COUNT));
1824 this->segment_count = max(1, min(this->segment_count, this->table_size));
1825 this->segment_mask = this->segment_count - 1;
1826 this->ike_sa_table = calloc(this->table_size, sizeof(linked_list_t*));
1827
1828 this->segments = (segment_t*)calloc(this->segment_count, sizeof(segment_t));
1829 for (i = 0; i < this->segment_count; i++)
1830 {
1831 this->segments[i].mutex = mutex_create(MUTEX_TYPE_RECURSIVE);
1832 this->segments[i].count = 0;
1833 }
1834
1835 /* we use the same table parameters for the table to track half-open SAs */
1836 this->half_open_table = calloc(this->table_size, sizeof(linked_list_t*));
1837 this->half_open_segments = calloc(this->segment_count, sizeof(shareable_segment_t));
1838 for (i = 0; i < this->segment_count; i++)
1839 {
1840 this->half_open_segments[i].lock = rwlock_create(RWLOCK_TYPE_DEFAULT);
1841 this->half_open_segments[i].count = 0;
1842 }
1843
1844 /* also for the hash table used for duplicate tests */
1845 this->connected_peers_table = calloc(this->table_size, sizeof(linked_list_t*));
1846 this->connected_peers_segments = calloc(this->segment_count, sizeof(shareable_segment_t));
1847 for (i = 0; i < this->segment_count; i++)
1848 {
1849 this->connected_peers_segments[i].lock = rwlock_create(RWLOCK_TYPE_DEFAULT);
1850 this->connected_peers_segments[i].count = 0;
1851 }
1852
1853 this->reuse_ikesa = lib->settings->get_bool(lib->settings,
1854 "charon.reuse_ikesa", TRUE);
1855 return &this->public;
1856 }