776b2b7aea32b8760fcaf7ee5aeb24f9b19a70c7
[strongswan.git] / src / libcharon / sa / ike_sa_manager.c
1 /*
2 * Copyright (C) 2005-2011 Martin Willi
3 * Copyright (C) 2011 revosec AG
4 * Copyright (C) 2008 Tobias Brunner
5 * Copyright (C) 2005 Jan Hutter
6 * Hochschule fuer Technik Rapperswil
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 */
18
19 #include <string.h>
20
21 #include "ike_sa_manager.h"
22
23 #include <daemon.h>
24 #include <sa/ike_sa_id.h>
25 #include <bus/bus.h>
26 #include <threading/condvar.h>
27 #include <threading/mutex.h>
28 #include <threading/rwlock.h>
29 #include <utils/linked_list.h>
30 #include <crypto/hashers/hasher.h>
31
32 /* the default size of the hash table (MUST be a power of 2) */
33 #define DEFAULT_HASHTABLE_SIZE 1
34
35 /* the maximum size of the hash table (MUST be a power of 2) */
36 #define MAX_HASHTABLE_SIZE (1 << 30)
37
38 /* the default number of segments (MUST be a power of 2) */
39 #define DEFAULT_SEGMENT_COUNT 1
40
41 typedef struct entry_t entry_t;
42
43 /**
44 * An entry in the linked list, contains IKE_SA, locking and lookup data.
45 */
46 struct entry_t {
47
48 /**
49 * Number of threads waiting for this ike_sa_t object.
50 */
51 int waiting_threads;
52
53 /**
54 * Condvar where threads can wait until ike_sa_t object is free for use again.
55 */
56 condvar_t *condvar;
57
58 /**
59 * Is this ike_sa currently checked out?
60 */
61 bool checked_out;
62
63 /**
64 * Does this SA drives out new threads?
65 */
66 bool driveout_new_threads;
67
68 /**
69 * Does this SA drives out waiting threads?
70 */
71 bool driveout_waiting_threads;
72
73 /**
74 * Identification of an IKE_SA (SPIs).
75 */
76 ike_sa_id_t *ike_sa_id;
77
78 /**
79 * The contained ike_sa_t object.
80 */
81 ike_sa_t *ike_sa;
82
83 /**
84 * hash of the IKE_SA_INIT message, used to detect retransmissions
85 */
86 chunk_t init_hash;
87
88 /**
89 * remote host address, required for DoS detection and duplicate
90 * checking (host with same my_id and other_id is *not* considered
91 * a duplicate if the address family differs)
92 */
93 host_t *other;
94
95 /**
96 * As responder: Is this SA half-open?
97 */
98 bool half_open;
99
100 /**
101 * own identity, required for duplicate checking
102 */
103 identification_t *my_id;
104
105 /**
106 * remote identity, required for duplicate checking
107 */
108 identification_t *other_id;
109
110 /**
111 * message ID currently processing, if any
112 */
113 u_int32_t message_id;
114 };
115
116 /**
117 * Implementation of entry_t.destroy.
118 */
119 static status_t entry_destroy(entry_t *this)
120 {
121 /* also destroy IKE SA */
122 this->ike_sa->destroy(this->ike_sa);
123 this->ike_sa_id->destroy(this->ike_sa_id);
124 chunk_free(&this->init_hash);
125 DESTROY_IF(this->other);
126 DESTROY_IF(this->my_id);
127 DESTROY_IF(this->other_id);
128 this->condvar->destroy(this->condvar);
129 free(this);
130 return SUCCESS;
131 }
132
133 /**
134 * Creates a new entry for the ike_sa_t list.
135 */
136 static entry_t *entry_create()
137 {
138 entry_t *this = malloc_thing(entry_t);
139
140 this->waiting_threads = 0;
141 this->condvar = condvar_create(CONDVAR_TYPE_DEFAULT);
142
143 /* we set checkout flag when we really give it out */
144 this->checked_out = FALSE;
145 this->driveout_new_threads = FALSE;
146 this->driveout_waiting_threads = FALSE;
147 this->message_id = -1;
148 this->init_hash = chunk_empty;
149 this->other = NULL;
150 this->half_open = FALSE;
151 this->my_id = NULL;
152 this->other_id = NULL;
153 this->ike_sa_id = NULL;
154 this->ike_sa = NULL;
155
156 return this;
157 }
158
159 /**
160 * Function that matches entry_t objects by initiator SPI and the hash of the
161 * IKE_SA_INIT message.
162 */
163 static bool entry_match_by_hash(entry_t *entry, ike_sa_id_t *id, chunk_t *hash)
164 {
165 return id->get_responder_spi(id) == 0 &&
166 id->get_initiator_spi(id) == entry->ike_sa_id->get_initiator_spi(entry->ike_sa_id) &&
167 chunk_equals(*hash, entry->init_hash);
168 }
169
170 /**
171 * Function that matches entry_t objects by ike_sa_id_t.
172 */
173 static bool entry_match_by_id(entry_t *entry, ike_sa_id_t *id)
174 {
175 if (id->equals(id, entry->ike_sa_id))
176 {
177 return TRUE;
178 }
179 if ((id->get_responder_spi(id) == 0 ||
180 entry->ike_sa_id->get_responder_spi(entry->ike_sa_id) == 0) &&
181 id->get_initiator_spi(id) == entry->ike_sa_id->get_initiator_spi(entry->ike_sa_id))
182 {
183 /* this is TRUE for IKE_SAs that we initiated but have not yet received a response */
184 return TRUE;
185 }
186 return FALSE;
187 }
188
189 /**
190 * Function that matches entry_t objects by ike_sa_t pointers.
191 */
192 static bool entry_match_by_sa(entry_t *entry, ike_sa_t *ike_sa)
193 {
194 return entry->ike_sa == ike_sa;
195 }
196
197 /**
198 * Hash function for ike_sa_id_t objects.
199 */
200 static u_int ike_sa_id_hash(ike_sa_id_t *ike_sa_id)
201 {
202 /* we always use initiator spi as key */
203 return ike_sa_id->get_initiator_spi(ike_sa_id);
204 }
205
206 typedef struct half_open_t half_open_t;
207
208 /**
209 * Struct to manage half-open IKE_SAs per peer.
210 */
211 struct half_open_t {
212 /** chunk of remote host address */
213 chunk_t other;
214
215 /** the number of half-open IKE_SAs with that host */
216 u_int count;
217 };
218
219 /**
220 * Destroys a half_open_t object.
221 */
222 static void half_open_destroy(half_open_t *this)
223 {
224 chunk_free(&this->other);
225 free(this);
226 }
227
228 /**
229 * Function that matches half_open_t objects by the given IP address chunk.
230 */
231 static bool half_open_match(half_open_t *half_open, chunk_t *addr)
232 {
233 return chunk_equals(*addr, half_open->other);
234 }
235
236 typedef struct connected_peers_t connected_peers_t;
237
238 struct connected_peers_t {
239 /** own identity */
240 identification_t *my_id;
241
242 /** remote identity */
243 identification_t *other_id;
244
245 /** ip address family of peer */
246 int family;
247
248 /** list of ike_sa_id_t objects of IKE_SAs between the two identities */
249 linked_list_t *sas;
250 };
251
252 static void connected_peers_destroy(connected_peers_t *this)
253 {
254 this->my_id->destroy(this->my_id);
255 this->other_id->destroy(this->other_id);
256 this->sas->destroy(this->sas);
257 free(this);
258 }
259
260 /**
261 * Function that matches connected_peers_t objects by the given ids.
262 */
263 static bool connected_peers_match(connected_peers_t *connected_peers,
264 identification_t *my_id, identification_t *other_id,
265 uintptr_t family)
266 {
267 return my_id->equals(my_id, connected_peers->my_id) &&
268 other_id->equals(other_id, connected_peers->other_id) &&
269 family == connected_peers->family;
270 }
271
272 typedef struct segment_t segment_t;
273
274 /**
275 * Struct to manage segments of the hash table.
276 */
277 struct segment_t {
278 /** mutex to access a segment exclusively */
279 mutex_t *mutex;
280
281 /** the number of entries in this segment */
282 u_int count;
283 };
284
285 typedef struct shareable_segment_t shareable_segment_t;
286
287 /**
288 * Struct to manage segments of the "half-open" and "connected peers" hash tables.
289 */
290 struct shareable_segment_t {
291 /** rwlock to access a segment non-/exclusively */
292 rwlock_t *lock;
293
294 /** the number of entries in this segment - in case of the "half-open table"
295 * it's the sum of all half_open_t.count in a segment. */
296 u_int count;
297 };
298
299 typedef struct private_ike_sa_manager_t private_ike_sa_manager_t;
300
301 /**
302 * Additional private members of ike_sa_manager_t.
303 */
304 struct private_ike_sa_manager_t {
305 /**
306 * Public interface of ike_sa_manager_t.
307 */
308 ike_sa_manager_t public;
309
310 /**
311 * Hash table with entries for the ike_sa_t objects.
312 */
313 linked_list_t **ike_sa_table;
314
315 /**
316 * The size of the hash table.
317 */
318 u_int table_size;
319
320 /**
321 * Mask to map the hashes to table rows.
322 */
323 u_int table_mask;
324
325 /**
326 * Segments of the hash table.
327 */
328 segment_t *segments;
329
330 /**
331 * The number of segments.
332 */
333 u_int segment_count;
334
335 /**
336 * Mask to map a table row to a segment.
337 */
338 u_int segment_mask;
339
340 /**
341 * Hash table with half_open_t objects.
342 */
343 linked_list_t **half_open_table;
344
345 /**
346 * Segments of the "half-open" hash table.
347 */
348 shareable_segment_t *half_open_segments;
349
350 /**
351 * Hash table with connected_peers_t objects.
352 */
353 linked_list_t **connected_peers_table;
354
355 /**
356 * Segments of the "connected peers" hash table.
357 */
358 shareable_segment_t *connected_peers_segments;
359
360 /**
361 * RNG to get random SPIs for our side
362 */
363 rng_t *rng;
364
365 /**
366 * SHA1 hasher for IKE_SA_INIT retransmit detection
367 */
368 hasher_t *hasher;
369
370 /**
371 * reuse existing IKE_SAs in checkout_by_config
372 */
373 bool reuse_ikesa;
374 };
375
376 /**
377 * Acquire a lock to access the segment of the table row with the given index.
378 * It also works with the segment index directly.
379 */
380 static void lock_single_segment(private_ike_sa_manager_t *this, u_int index)
381 {
382 mutex_t *lock = this->segments[index & this->segment_mask].mutex;
383
384 lock->lock(lock);
385 }
386
387 /**
388 * Release the lock required to access the segment of the table row with the given index.
389 * It also works with the segment index directly.
390 */
391 static void unlock_single_segment(private_ike_sa_manager_t *this, u_int index)
392 {
393 mutex_t *lock = this->segments[index & this->segment_mask].mutex;
394
395 lock->unlock(lock);
396 }
397
398 /**
399 * Lock all segments
400 */
401 static void lock_all_segments(private_ike_sa_manager_t *this)
402 {
403 u_int i;
404
405 for (i = 0; i < this->segment_count; i++)
406 {
407 this->segments[i].mutex->lock(this->segments[i].mutex);
408 }
409 }
410
411 /**
412 * Unlock all segments
413 */
414 static void unlock_all_segments(private_ike_sa_manager_t *this)
415 {
416 u_int i;
417
418 for (i = 0; i < this->segment_count; i++)
419 {
420 this->segments[i].mutex->unlock(this->segments[i].mutex);
421 }
422 }
423
424 typedef struct private_enumerator_t private_enumerator_t;
425
426 /**
427 * hash table enumerator implementation
428 */
429 struct private_enumerator_t {
430
431 /**
432 * implements enumerator interface
433 */
434 enumerator_t enumerator;
435
436 /**
437 * associated ike_sa_manager_t
438 */
439 private_ike_sa_manager_t *manager;
440
441 /**
442 * current segment index
443 */
444 u_int segment;
445
446 /**
447 * currently enumerating entry
448 */
449 entry_t *entry;
450
451 /**
452 * current table row index
453 */
454 u_int row;
455
456 /**
457 * enumerator for the current table row
458 */
459 enumerator_t *current;
460 };
461
462 METHOD(enumerator_t, enumerate, bool,
463 private_enumerator_t *this, entry_t **entry, u_int *segment)
464 {
465 if (this->entry)
466 {
467 this->entry->condvar->signal(this->entry->condvar);
468 this->entry = NULL;
469 }
470 while (this->segment < this->manager->segment_count)
471 {
472 while (this->row < this->manager->table_size)
473 {
474 if (this->current)
475 {
476 entry_t *item;
477
478 if (this->current->enumerate(this->current, &item))
479 {
480 *entry = this->entry = item;
481 *segment = this->segment;
482 return TRUE;
483 }
484 this->current->destroy(this->current);
485 this->current = NULL;
486 unlock_single_segment(this->manager, this->segment);
487 }
488 else
489 {
490 linked_list_t *list;
491
492 lock_single_segment(this->manager, this->segment);
493 if ((list = this->manager->ike_sa_table[this->row]) != NULL &&
494 list->get_count(list))
495 {
496 this->current = list->create_enumerator(list);
497 continue;
498 }
499 unlock_single_segment(this->manager, this->segment);
500 }
501 this->row += this->manager->segment_count;
502 }
503 this->segment++;
504 this->row = this->segment;
505 }
506 return FALSE;
507 }
508
509 METHOD(enumerator_t, enumerator_destroy, void,
510 private_enumerator_t *this)
511 {
512 if (this->entry)
513 {
514 this->entry->condvar->signal(this->entry->condvar);
515 }
516 if (this->current)
517 {
518 this->current->destroy(this->current);
519 unlock_single_segment(this->manager, this->segment);
520 }
521 free(this);
522 }
523
524 /**
525 * Creates an enumerator to enumerate the entries in the hash table.
526 */
527 static enumerator_t* create_table_enumerator(private_ike_sa_manager_t *this)
528 {
529 private_enumerator_t *enumerator;
530
531 INIT(enumerator,
532 .enumerator = {
533 .enumerate = (void*)_enumerate,
534 .destroy = _enumerator_destroy,
535 },
536 .manager = this,
537 );
538 return &enumerator->enumerator;
539 }
540
541 /**
542 * Put an entry into the hash table.
543 * Note: The caller has to unlock the returned segment.
544 */
545 static u_int put_entry(private_ike_sa_manager_t *this, entry_t *entry)
546 {
547 linked_list_t *list;
548 u_int row, segment;
549
550 row = ike_sa_id_hash(entry->ike_sa_id) & this->table_mask;
551 segment = row & this->segment_mask;
552
553 lock_single_segment(this, segment);
554 list = this->ike_sa_table[row];
555 if (!list)
556 {
557 list = this->ike_sa_table[row] = linked_list_create();
558 }
559 list->insert_last(list, entry);
560 this->segments[segment].count++;
561 return segment;
562 }
563
564 /**
565 * Remove an entry from the hash table.
566 * Note: The caller MUST have a lock on the segment of this entry.
567 */
568 static void remove_entry(private_ike_sa_manager_t *this, entry_t *entry)
569 {
570 linked_list_t *list;
571 u_int row, segment;
572
573 row = ike_sa_id_hash(entry->ike_sa_id) & this->table_mask;
574 segment = row & this->segment_mask;
575 list = this->ike_sa_table[row];
576 if (list)
577 {
578 entry_t *current;
579 enumerator_t *enumerator;
580
581 enumerator = list->create_enumerator(list);
582 while (enumerator->enumerate(enumerator, &current))
583 {
584 if (current == entry)
585 {
586 list->remove_at(list, enumerator);
587 this->segments[segment].count--;
588 break;
589 }
590 }
591 enumerator->destroy(enumerator);
592 }
593 }
594
595 /**
596 * Remove the entry at the current enumerator position.
597 */
598 static void remove_entry_at(private_enumerator_t *this)
599 {
600 this->entry = NULL;
601 if (this->current)
602 {
603 linked_list_t *list = this->manager->ike_sa_table[this->row];
604 list->remove_at(list, this->current);
605 this->manager->segments[this->segment].count--;
606 }
607 }
608
609 /**
610 * Find an entry using the provided match function to compare the entries for
611 * equality.
612 */
613 static status_t get_entry_by_match_function(private_ike_sa_manager_t *this,
614 ike_sa_id_t *ike_sa_id, entry_t **entry, u_int *segment,
615 linked_list_match_t match, void *p1, void *p2)
616 {
617 entry_t *current;
618 linked_list_t *list;
619 u_int row, seg;
620
621 row = ike_sa_id_hash(ike_sa_id) & this->table_mask;
622 seg = row & this->segment_mask;
623
624 lock_single_segment(this, seg);
625 list = this->ike_sa_table[row];
626 if (list)
627 {
628 if (list->find_first(list, match, (void**)&current, p1, p2) == SUCCESS)
629 {
630 *entry = current;
631 *segment = seg;
632 /* the locked segment has to be unlocked by the caller */
633 return SUCCESS;
634 }
635 }
636 unlock_single_segment(this, seg);
637 return NOT_FOUND;
638 }
639
640 /**
641 * Find an entry by ike_sa_id_t.
642 * Note: On SUCCESS, the caller has to unlock the segment.
643 */
644 static status_t get_entry_by_id(private_ike_sa_manager_t *this,
645 ike_sa_id_t *ike_sa_id, entry_t **entry, u_int *segment)
646 {
647 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
648 (linked_list_match_t)entry_match_by_id, ike_sa_id, NULL);
649 }
650
651 /**
652 * Find an entry by initiator SPI and IKE_SA_INIT hash.
653 * Note: On SUCCESS, the caller has to unlock the segment.
654 */
655 static status_t get_entry_by_hash(private_ike_sa_manager_t *this,
656 ike_sa_id_t *ike_sa_id, chunk_t hash, entry_t **entry, u_int *segment)
657 {
658 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
659 (linked_list_match_t)entry_match_by_hash, ike_sa_id, &hash);
660 }
661
662 /**
663 * Find an entry by IKE_SA pointer.
664 * Note: On SUCCESS, the caller has to unlock the segment.
665 */
666 static status_t get_entry_by_sa(private_ike_sa_manager_t *this,
667 ike_sa_id_t *ike_sa_id, ike_sa_t *ike_sa, entry_t **entry, u_int *segment)
668 {
669 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
670 (linked_list_match_t)entry_match_by_sa, ike_sa, NULL);
671 }
672
673 /**
674 * Wait until no other thread is using an IKE_SA, return FALSE if entry not
675 * acquirable.
676 */
677 static bool wait_for_entry(private_ike_sa_manager_t *this, entry_t *entry,
678 u_int segment)
679 {
680 if (entry->driveout_new_threads)
681 {
682 /* we are not allowed to get this */
683 return FALSE;
684 }
685 while (entry->checked_out && !entry->driveout_waiting_threads)
686 {
687 /* so wait until we can get it for us.
688 * we register us as waiting. */
689 entry->waiting_threads++;
690 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
691 entry->waiting_threads--;
692 }
693 /* hm, a deletion request forbids us to get this SA, get next one */
694 if (entry->driveout_waiting_threads)
695 {
696 /* we must signal here, others may be waiting on it, too */
697 entry->condvar->signal(entry->condvar);
698 return FALSE;
699 }
700 return TRUE;
701 }
702
703 /**
704 * Put a half-open SA into the hash table.
705 */
706 static void put_half_open(private_ike_sa_manager_t *this, entry_t *entry)
707 {
708 half_open_t *half_open = NULL;
709 linked_list_t *list;
710 chunk_t addr;
711 u_int row, segment;
712 rwlock_t *lock;
713
714 addr = entry->other->get_address(entry->other);
715 row = chunk_hash(addr) & this->table_mask;
716 segment = row & this->segment_mask;
717 lock = this->half_open_segments[segment].lock;
718 lock->write_lock(lock);
719 list = this->half_open_table[row];
720 if (list)
721 {
722 half_open_t *current;
723
724 if (list->find_first(list, (linked_list_match_t)half_open_match,
725 (void**)&current, &addr) == SUCCESS)
726 {
727 half_open = current;
728 half_open->count++;
729 this->half_open_segments[segment].count++;
730 }
731 }
732 else
733 {
734 list = this->half_open_table[row] = linked_list_create();
735 }
736
737 if (!half_open)
738 {
739 INIT(half_open,
740 .other = chunk_clone(addr),
741 .count = 1,
742 );
743 list->insert_last(list, half_open);
744 this->half_open_segments[segment].count++;
745 }
746 lock->unlock(lock);
747 }
748
749 /**
750 * Remove a half-open SA from the hash table.
751 */
752 static void remove_half_open(private_ike_sa_manager_t *this, entry_t *entry)
753 {
754 linked_list_t *list;
755 chunk_t addr;
756 u_int row, segment;
757 rwlock_t *lock;
758
759 addr = entry->other->get_address(entry->other);
760 row = chunk_hash(addr) & this->table_mask;
761 segment = row & this->segment_mask;
762 lock = this->half_open_segments[segment].lock;
763 lock->write_lock(lock);
764 list = this->half_open_table[row];
765 if (list)
766 {
767 half_open_t *current;
768 enumerator_t *enumerator;
769
770 enumerator = list->create_enumerator(list);
771 while (enumerator->enumerate(enumerator, &current))
772 {
773 if (half_open_match(current, &addr))
774 {
775 if (--current->count == 0)
776 {
777 list->remove_at(list, enumerator);
778 half_open_destroy(current);
779 }
780 this->half_open_segments[segment].count--;
781 break;
782 }
783 }
784 enumerator->destroy(enumerator);
785 }
786 lock->unlock(lock);
787 }
788
789 /**
790 * Put an SA between two peers into the hash table.
791 */
792 static void put_connected_peers(private_ike_sa_manager_t *this, entry_t *entry)
793 {
794 connected_peers_t *connected_peers = NULL;
795 chunk_t my_id, other_id;
796 linked_list_t *list;
797 u_int row, segment;
798 rwlock_t *lock;
799
800 my_id = entry->my_id->get_encoding(entry->my_id);
801 other_id = entry->other_id->get_encoding(entry->other_id);
802 row = chunk_hash_inc(other_id, chunk_hash(my_id)) & this->table_mask;
803 segment = row & this->segment_mask;
804 lock = this->connected_peers_segments[segment].lock;
805 lock->write_lock(lock);
806 list = this->connected_peers_table[row];
807 if (list)
808 {
809 connected_peers_t *current;
810
811 if (list->find_first(list, (linked_list_match_t)connected_peers_match,
812 (void**)&current, entry->my_id, entry->other_id,
813 (uintptr_t)entry->other->get_family(entry->other)) == SUCCESS)
814 {
815 connected_peers = current;
816 if (connected_peers->sas->find_first(connected_peers->sas,
817 (linked_list_match_t)entry->ike_sa_id->equals,
818 NULL, entry->ike_sa_id) == SUCCESS)
819 {
820 lock->unlock(lock);
821 return;
822 }
823 }
824 }
825 else
826 {
827 list = this->connected_peers_table[row] = linked_list_create();
828 }
829
830 if (!connected_peers)
831 {
832 INIT(connected_peers,
833 .my_id = entry->my_id->clone(entry->my_id),
834 .other_id = entry->other_id->clone(entry->other_id),
835 .family = entry->other->get_family(entry->other),
836 .sas = linked_list_create(),
837 );
838 list->insert_last(list, connected_peers);
839 }
840 connected_peers->sas->insert_last(connected_peers->sas,
841 entry->ike_sa_id->clone(entry->ike_sa_id));
842 this->connected_peers_segments[segment].count++;
843 lock->unlock(lock);
844 }
845
846 /**
847 * Remove an SA between two peers from the hash table.
848 */
849 static void remove_connected_peers(private_ike_sa_manager_t *this, entry_t *entry)
850 {
851 chunk_t my_id, other_id;
852 linked_list_t *list;
853 u_int row, segment;
854 rwlock_t *lock;
855
856 my_id = entry->my_id->get_encoding(entry->my_id);
857 other_id = entry->other_id->get_encoding(entry->other_id);
858 row = chunk_hash_inc(other_id, chunk_hash(my_id)) & this->table_mask;
859 segment = row & this->segment_mask;
860
861 lock = this->connected_peers_segments[segment].lock;
862 lock->write_lock(lock);
863 list = this->connected_peers_table[row];
864 if (list)
865 {
866 connected_peers_t *current;
867 enumerator_t *enumerator;
868
869 enumerator = list->create_enumerator(list);
870 while (enumerator->enumerate(enumerator, &current))
871 {
872 if (connected_peers_match(current, entry->my_id, entry->other_id,
873 (uintptr_t)entry->other->get_family(entry->other)))
874 {
875 ike_sa_id_t *ike_sa_id;
876 enumerator_t *inner;
877
878 inner = current->sas->create_enumerator(current->sas);
879 while (inner->enumerate(inner, &ike_sa_id))
880 {
881 if (ike_sa_id->equals(ike_sa_id, entry->ike_sa_id))
882 {
883 current->sas->remove_at(current->sas, inner);
884 ike_sa_id->destroy(ike_sa_id);
885 this->connected_peers_segments[segment].count--;
886 break;
887 }
888 }
889 inner->destroy(inner);
890 if (current->sas->get_count(current->sas) == 0)
891 {
892 list->remove_at(list, enumerator);
893 connected_peers_destroy(current);
894 }
895 break;
896 }
897 }
898 enumerator->destroy(enumerator);
899 }
900 lock->unlock(lock);
901 }
902
903 /**
904 * Get a random SPI for new IKE_SAs
905 */
906 static u_int64_t get_spi(private_ike_sa_manager_t *this)
907 {
908 u_int64_t spi = 0;
909
910 if (this->rng)
911 {
912 this->rng->get_bytes(this->rng, sizeof(spi), (u_int8_t*)&spi);
913 }
914 return spi;
915 }
916
917 METHOD(ike_sa_manager_t, checkout, ike_sa_t*,
918 private_ike_sa_manager_t *this, ike_sa_id_t *ike_sa_id)
919 {
920 ike_sa_t *ike_sa = NULL;
921 entry_t *entry;
922 u_int segment;
923
924 DBG2(DBG_MGR, "checkout IKE_SA");
925
926 if (get_entry_by_id(this, ike_sa_id, &entry, &segment) == SUCCESS)
927 {
928 if (wait_for_entry(this, entry, segment))
929 {
930 entry->checked_out = TRUE;
931 ike_sa = entry->ike_sa;
932 DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
933 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
934 }
935 unlock_single_segment(this, segment);
936 }
937 charon->bus->set_sa(charon->bus, ike_sa);
938 return ike_sa;
939 }
940
941 METHOD(ike_sa_manager_t, checkout_new, ike_sa_t*,
942 private_ike_sa_manager_t* this, ike_version_t version, bool initiator)
943 {
944 ike_sa_id_t *ike_sa_id;
945 ike_sa_t *ike_sa;
946
947 if (initiator)
948 {
949 ike_sa_id = ike_sa_id_create(get_spi(this), 0, TRUE);
950 }
951 else
952 {
953 ike_sa_id = ike_sa_id_create(0, get_spi(this), FALSE);
954 }
955 ike_sa = ike_sa_create(ike_sa_id, initiator, version);
956 ike_sa_id->destroy(ike_sa_id);
957
958 DBG2(DBG_MGR, "created IKE_SA %s[%u]", ike_sa->get_name(ike_sa),
959 ike_sa->get_unique_id(ike_sa));
960
961 return ike_sa;
962 }
963
964 METHOD(ike_sa_manager_t, checkout_by_message, ike_sa_t*,
965 private_ike_sa_manager_t* this, message_t *message)
966 {
967 u_int segment;
968 entry_t *entry;
969 ike_sa_t *ike_sa = NULL;
970 ike_sa_id_t *id;
971 ike_version_t ike_version;
972 bool is_init = FALSE;
973
974 id = message->get_ike_sa_id(message);
975 id = id->clone(id);
976 id->switch_initiator(id);
977
978 DBG2(DBG_MGR, "checkout IKE_SA by message");
979
980 if (id->get_responder_spi(id) == 0)
981 {
982 if (message->get_major_version(message) == IKEV2_MAJOR_VERSION)
983 {
984 if (message->get_exchange_type(message) == IKE_SA_INIT &&
985 message->get_request(message))
986 {
987 ike_version = IKEV2;
988 is_init = TRUE;
989 }
990 }
991 else
992 {
993 if (message->get_exchange_type(message) == ID_PROT ||
994 message->get_exchange_type(message) == AGGRESSIVE)
995 {
996 ike_version = IKEV1;
997 is_init = TRUE;
998 }
999 }
1000 }
1001
1002 if (is_init && this->hasher)
1003 {
1004 /* First request. Check for an IKE_SA with such a message hash. */
1005 chunk_t hash;
1006
1007 this->hasher->allocate_hash(this->hasher,
1008 message->get_packet_data(message), &hash);
1009
1010 if (get_entry_by_hash(this, id, hash, &entry, &segment) == SUCCESS)
1011 {
1012 if (message->get_exchange_type(message) == IKE_SA_INIT &&
1013 entry->message_id == 0)
1014 {
1015 unlock_single_segment(this, segment);
1016 chunk_free(&hash);
1017 id->destroy(id);
1018 DBG1(DBG_MGR, "ignoring IKE_SA_INIT, already processing");
1019 return NULL;
1020 }
1021 else if (wait_for_entry(this, entry, segment))
1022 {
1023 entry->checked_out = TRUE;
1024 entry->message_id = message->get_message_id(message);
1025 ike_sa = entry->ike_sa;
1026 DBG2(DBG_MGR, "IKE_SA %s[%u] checked out by hash",
1027 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1028 }
1029 unlock_single_segment(this, segment);
1030 }
1031
1032 if (ike_sa == NULL)
1033 {
1034 /* no IKE_SA found, create a new one */
1035 id->set_responder_spi(id, get_spi(this));
1036 entry = entry_create();
1037 /* a new SA checked out by message is a responder SA */
1038 entry->ike_sa = ike_sa_create(id, FALSE, ike_version);
1039 entry->ike_sa_id = id->clone(id);
1040
1041 segment = put_entry(this, entry);
1042 entry->checked_out = TRUE;
1043 unlock_single_segment(this, segment);
1044
1045 entry->message_id = message->get_message_id(message);
1046 entry->init_hash = hash;
1047 ike_sa = entry->ike_sa;
1048
1049 DBG2(DBG_MGR, "created IKE_SA %s[%u]",
1050 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1051 }
1052 else
1053 {
1054 chunk_free(&hash);
1055 DBG1(DBG_MGR, "ignoring message, no such IKE_SA");
1056 }
1057 id->destroy(id);
1058 charon->bus->set_sa(charon->bus, ike_sa);
1059 return ike_sa;
1060 }
1061
1062 if (get_entry_by_id(this, id, &entry, &segment) == SUCCESS)
1063 {
1064 /* only check out in IKEv2 if we are not already processing it */
1065 if (message->get_request(message) &&
1066 message->get_message_id(message) == entry->message_id)
1067 {
1068 DBG1(DBG_MGR, "ignoring request with ID %d, already processing",
1069 entry->message_id);
1070 }
1071 else if (wait_for_entry(this, entry, segment))
1072 {
1073 ike_sa_id_t *ike_id;
1074
1075 ike_id = entry->ike_sa->get_id(entry->ike_sa);
1076 entry->checked_out = TRUE;
1077 entry->message_id = message->get_message_id(message);
1078 if (ike_id->get_responder_spi(ike_id) == 0)
1079 {
1080 ike_id->set_responder_spi(ike_id, id->get_responder_spi(id));
1081 }
1082 ike_sa = entry->ike_sa;
1083 DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
1084 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1085 }
1086 unlock_single_segment(this, segment);
1087 }
1088 id->destroy(id);
1089 charon->bus->set_sa(charon->bus, ike_sa);
1090 return ike_sa;
1091 }
1092
1093 METHOD(ike_sa_manager_t, checkout_by_config, ike_sa_t*,
1094 private_ike_sa_manager_t *this, peer_cfg_t *peer_cfg)
1095 {
1096 enumerator_t *enumerator;
1097 entry_t *entry;
1098 ike_sa_t *ike_sa = NULL;
1099 peer_cfg_t *current_peer;
1100 ike_cfg_t *current_ike;
1101 u_int segment;
1102
1103 DBG2(DBG_MGR, "checkout IKE_SA by config");
1104
1105 if (!this->reuse_ikesa)
1106 { /* IKE_SA reuse disable by config */
1107 ike_sa = checkout_new(this, peer_cfg->get_ike_version(peer_cfg), TRUE);
1108 charon->bus->set_sa(charon->bus, ike_sa);
1109 return ike_sa;
1110 }
1111
1112 enumerator = create_table_enumerator(this);
1113 while (enumerator->enumerate(enumerator, &entry, &segment))
1114 {
1115 if (!wait_for_entry(this, entry, segment))
1116 {
1117 continue;
1118 }
1119 if (entry->ike_sa->get_state(entry->ike_sa) == IKE_DELETING)
1120 { /* skip IKE_SAs which are not usable */
1121 continue;
1122 }
1123
1124 current_peer = entry->ike_sa->get_peer_cfg(entry->ike_sa);
1125 if (current_peer && current_peer->equals(current_peer, peer_cfg))
1126 {
1127 current_ike = current_peer->get_ike_cfg(current_peer);
1128 if (current_ike->equals(current_ike, peer_cfg->get_ike_cfg(peer_cfg)))
1129 {
1130 entry->checked_out = TRUE;
1131 ike_sa = entry->ike_sa;
1132 DBG2(DBG_MGR, "found existing IKE_SA %u with a '%s' config",
1133 ike_sa->get_unique_id(ike_sa),
1134 current_peer->get_name(current_peer));
1135 break;
1136 }
1137 }
1138 }
1139 enumerator->destroy(enumerator);
1140
1141 if (!ike_sa)
1142 { /* no IKE_SA using such a config, hand out a new */
1143 ike_sa = checkout_new(this, peer_cfg->get_ike_version(peer_cfg), TRUE);
1144 }
1145 charon->bus->set_sa(charon->bus, ike_sa);
1146 return ike_sa;
1147 }
1148
1149 METHOD(ike_sa_manager_t, checkout_by_id, ike_sa_t*,
1150 private_ike_sa_manager_t *this, u_int32_t id, bool child)
1151 {
1152 enumerator_t *enumerator, *children;
1153 entry_t *entry;
1154 ike_sa_t *ike_sa = NULL;
1155 child_sa_t *child_sa;
1156 u_int segment;
1157
1158 DBG2(DBG_MGR, "checkout IKE_SA by ID");
1159
1160 enumerator = create_table_enumerator(this);
1161 while (enumerator->enumerate(enumerator, &entry, &segment))
1162 {
1163 if (wait_for_entry(this, entry, segment))
1164 {
1165 /* look for a child with such a reqid ... */
1166 if (child)
1167 {
1168 children = entry->ike_sa->create_child_sa_enumerator(entry->ike_sa);
1169 while (children->enumerate(children, (void**)&child_sa))
1170 {
1171 if (child_sa->get_reqid(child_sa) == id)
1172 {
1173 ike_sa = entry->ike_sa;
1174 break;
1175 }
1176 }
1177 children->destroy(children);
1178 }
1179 else /* ... or for a IKE_SA with such a unique id */
1180 {
1181 if (entry->ike_sa->get_unique_id(entry->ike_sa) == id)
1182 {
1183 ike_sa = entry->ike_sa;
1184 }
1185 }
1186 /* got one, return */
1187 if (ike_sa)
1188 {
1189 entry->checked_out = TRUE;
1190 DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
1191 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1192 break;
1193 }
1194 }
1195 }
1196 enumerator->destroy(enumerator);
1197
1198 charon->bus->set_sa(charon->bus, ike_sa);
1199 return ike_sa;
1200 }
1201
1202 METHOD(ike_sa_manager_t, checkout_by_name, ike_sa_t*,
1203 private_ike_sa_manager_t *this, char *name, bool child)
1204 {
1205 enumerator_t *enumerator, *children;
1206 entry_t *entry;
1207 ike_sa_t *ike_sa = NULL;
1208 child_sa_t *child_sa;
1209 u_int segment;
1210
1211 enumerator = create_table_enumerator(this);
1212 while (enumerator->enumerate(enumerator, &entry, &segment))
1213 {
1214 if (wait_for_entry(this, entry, segment))
1215 {
1216 /* look for a child with such a policy name ... */
1217 if (child)
1218 {
1219 children = entry->ike_sa->create_child_sa_enumerator(entry->ike_sa);
1220 while (children->enumerate(children, (void**)&child_sa))
1221 {
1222 if (streq(child_sa->get_name(child_sa), name))
1223 {
1224 ike_sa = entry->ike_sa;
1225 break;
1226 }
1227 }
1228 children->destroy(children);
1229 }
1230 else /* ... or for a IKE_SA with such a connection name */
1231 {
1232 if (streq(entry->ike_sa->get_name(entry->ike_sa), name))
1233 {
1234 ike_sa = entry->ike_sa;
1235 }
1236 }
1237 /* got one, return */
1238 if (ike_sa)
1239 {
1240 entry->checked_out = TRUE;
1241 DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
1242 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1243 break;
1244 }
1245 }
1246 }
1247 enumerator->destroy(enumerator);
1248
1249 charon->bus->set_sa(charon->bus, ike_sa);
1250 return ike_sa;
1251 }
1252
1253 /**
1254 * enumerator filter function, waiting variant
1255 */
1256 static bool enumerator_filter_wait(private_ike_sa_manager_t *this,
1257 entry_t **in, ike_sa_t **out, u_int *segment)
1258 {
1259 if (wait_for_entry(this, *in, *segment))
1260 {
1261 *out = (*in)->ike_sa;
1262 return TRUE;
1263 }
1264 return FALSE;
1265 }
1266
1267 /**
1268 * enumerator filter function, skipping variant
1269 */
1270 static bool enumerator_filter_skip(private_ike_sa_manager_t *this,
1271 entry_t **in, ike_sa_t **out, u_int *segment)
1272 {
1273 if (!(*in)->driveout_new_threads &&
1274 !(*in)->driveout_waiting_threads &&
1275 !(*in)->checked_out)
1276 {
1277 *out = (*in)->ike_sa;
1278 return TRUE;
1279 }
1280 return FALSE;
1281 }
1282
1283 METHOD(ike_sa_manager_t, create_enumerator, enumerator_t*,
1284 private_ike_sa_manager_t* this, bool wait)
1285 {
1286 return enumerator_create_filter(create_table_enumerator(this),
1287 wait ? (void*)enumerator_filter_wait : (void*)enumerator_filter_skip,
1288 this, NULL);
1289 }
1290
1291 METHOD(ike_sa_manager_t, checkin, void,
1292 private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
1293 {
1294 /* to check the SA back in, we look for the pointer of the ike_sa
1295 * in all entries.
1296 * The lookup is done by initiator SPI, so even if the SPI has changed (e.g.
1297 * on reception of a IKE_SA_INIT response) the lookup will work but
1298 * updating of the SPI MAY be necessary...
1299 */
1300 entry_t *entry;
1301 ike_sa_id_t *ike_sa_id;
1302 host_t *other;
1303 identification_t *my_id, *other_id;
1304 u_int segment;
1305
1306 ike_sa_id = ike_sa->get_id(ike_sa);
1307 my_id = ike_sa->get_my_id(ike_sa);
1308 other_id = ike_sa->get_other_id(ike_sa);
1309 other = ike_sa->get_other_host(ike_sa);
1310
1311 DBG2(DBG_MGR, "checkin IKE_SA %s[%u]", ike_sa->get_name(ike_sa),
1312 ike_sa->get_unique_id(ike_sa));
1313
1314 /* look for the entry */
1315 if (get_entry_by_sa(this, ike_sa_id, ike_sa, &entry, &segment) == SUCCESS)
1316 {
1317 /* ike_sa_id must be updated */
1318 entry->ike_sa_id->replace_values(entry->ike_sa_id, ike_sa->get_id(ike_sa));
1319 /* signal waiting threads */
1320 entry->checked_out = FALSE;
1321 entry->message_id = -1;
1322 /* check if this SA is half-open */
1323 if (entry->half_open && ike_sa->get_state(ike_sa) != IKE_CONNECTING)
1324 {
1325 /* not half open anymore */
1326 entry->half_open = FALSE;
1327 remove_half_open(this, entry);
1328 }
1329 else if (entry->half_open && !other->ip_equals(other, entry->other))
1330 {
1331 /* the other host's IP has changed, we must update the hash table */
1332 remove_half_open(this, entry);
1333 DESTROY_IF(entry->other);
1334 entry->other = other->clone(other);
1335 put_half_open(this, entry);
1336 }
1337 else if (!entry->half_open &&
1338 !entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
1339 ike_sa->get_state(ike_sa) == IKE_CONNECTING)
1340 {
1341 /* this is a new half-open SA */
1342 entry->half_open = TRUE;
1343 entry->other = other->clone(other);
1344 put_half_open(this, entry);
1345 }
1346 DBG2(DBG_MGR, "check-in of IKE_SA successful.");
1347 entry->condvar->signal(entry->condvar);
1348 }
1349 else
1350 {
1351 entry = entry_create();
1352 entry->ike_sa_id = ike_sa_id->clone(ike_sa_id);
1353 entry->ike_sa = ike_sa;
1354 segment = put_entry(this, entry);
1355 }
1356
1357 /* apply identities for duplicate test */
1358 if (ike_sa->get_state(ike_sa) == IKE_ESTABLISHED &&
1359 entry->my_id == NULL && entry->other_id == NULL)
1360 {
1361 if (ike_sa->get_version(ike_sa) == IKEV1)
1362 {
1363 /* If authenticated and received INITIAL_CONTACT,
1364 * delete any existing IKE_SAs with that peer. */
1365 if (ike_sa->has_condition(ike_sa, COND_INIT_CONTACT_SEEN))
1366 {
1367 this->public.check_uniqueness(&this->public, ike_sa, TRUE);
1368 ike_sa->set_condition(ike_sa, COND_INIT_CONTACT_SEEN, FALSE);
1369 }
1370 }
1371
1372 entry->my_id = my_id->clone(my_id);
1373 entry->other_id = other_id->clone(other_id);
1374 if (!entry->other)
1375 {
1376 entry->other = other->clone(other);
1377 }
1378 put_connected_peers(this, entry);
1379 }
1380
1381 unlock_single_segment(this, segment);
1382
1383 charon->bus->set_sa(charon->bus, NULL);
1384 }
1385
1386 METHOD(ike_sa_manager_t, checkin_and_destroy, void,
1387 private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
1388 {
1389 /* deletion is a bit complex, we must ensure that no thread is waiting for
1390 * this SA.
1391 * We take this SA from the table, and start signaling while threads
1392 * are in the condvar.
1393 */
1394 entry_t *entry;
1395 ike_sa_id_t *ike_sa_id;
1396 u_int segment;
1397
1398 ike_sa_id = ike_sa->get_id(ike_sa);
1399
1400 DBG2(DBG_MGR, "checkin and destroy IKE_SA %s[%u]", ike_sa->get_name(ike_sa),
1401 ike_sa->get_unique_id(ike_sa));
1402
1403 if (get_entry_by_sa(this, ike_sa_id, ike_sa, &entry, &segment) == SUCCESS)
1404 {
1405 /* drive out waiting threads, as we are in hurry */
1406 entry->driveout_waiting_threads = TRUE;
1407 /* mark it, so no new threads can get this entry */
1408 entry->driveout_new_threads = TRUE;
1409 /* wait until all workers have done their work */
1410 while (entry->waiting_threads)
1411 {
1412 /* wake up all */
1413 entry->condvar->broadcast(entry->condvar);
1414 /* they will wake us again when their work is done */
1415 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
1416 }
1417 remove_entry(this, entry);
1418 unlock_single_segment(this, segment);
1419
1420 if (entry->half_open)
1421 {
1422 remove_half_open(this, entry);
1423 }
1424 if (entry->my_id && entry->other_id)
1425 {
1426 remove_connected_peers(this, entry);
1427 }
1428
1429 entry_destroy(entry);
1430
1431 DBG2(DBG_MGR, "check-in and destroy of IKE_SA successful");
1432 }
1433 else
1434 {
1435 DBG1(DBG_MGR, "tried to check-in and delete nonexisting IKE_SA");
1436 ike_sa->destroy(ike_sa);
1437 }
1438 charon->bus->set_sa(charon->bus, NULL);
1439 }
1440
1441 METHOD(ike_sa_manager_t, check_uniqueness, bool,
1442 private_ike_sa_manager_t *this, ike_sa_t *ike_sa, bool force_replace)
1443 {
1444 bool cancel = FALSE;
1445 peer_cfg_t *peer_cfg;
1446 unique_policy_t policy;
1447 linked_list_t *list, *duplicate_ids = NULL;
1448 enumerator_t *enumerator;
1449 ike_sa_id_t *duplicate_id = NULL;
1450 identification_t *me, *other;
1451 u_int row, segment;
1452 rwlock_t *lock;
1453
1454 peer_cfg = ike_sa->get_peer_cfg(ike_sa);
1455 policy = peer_cfg->get_unique_policy(peer_cfg);
1456 if (policy == UNIQUE_NO && !force_replace)
1457 {
1458 return FALSE;
1459 }
1460
1461 me = ike_sa->get_my_id(ike_sa);
1462 other = ike_sa->get_other_id(ike_sa);
1463
1464 row = chunk_hash_inc(other->get_encoding(other),
1465 chunk_hash(me->get_encoding(me))) & this->table_mask;
1466 segment = row & this->segment_mask;
1467
1468 lock = this->connected_peers_segments[segment & this->segment_mask].lock;
1469 lock->read_lock(lock);
1470 list = this->connected_peers_table[row];
1471 if (list)
1472 {
1473 connected_peers_t *current;
1474 host_t *other_host;
1475
1476 other_host = ike_sa->get_other_host(ike_sa);
1477 if (list->find_first(list, (linked_list_match_t)connected_peers_match,
1478 (void**)&current, me, other,
1479 (uintptr_t)other_host->get_family(other_host)) == SUCCESS)
1480 {
1481 /* clone the list, so we can release the lock */
1482 duplicate_ids = current->sas->clone_offset(current->sas,
1483 offsetof(ike_sa_id_t, clone));
1484 }
1485 }
1486 lock->unlock(lock);
1487
1488 if (!duplicate_ids)
1489 {
1490 return FALSE;
1491 }
1492
1493 enumerator = duplicate_ids->create_enumerator(duplicate_ids);
1494 while (enumerator->enumerate(enumerator, &duplicate_id))
1495 {
1496 status_t status = SUCCESS;
1497 ike_sa_t *duplicate;
1498
1499 duplicate = checkout(this, duplicate_id);
1500 if (!duplicate)
1501 {
1502 continue;
1503 }
1504 if (force_replace)
1505 {
1506 DBG1(DBG_IKE, "destroying duplicate IKE_SA for peer '%Y', "
1507 "received INITIAL_CONTACT", other);
1508 checkin_and_destroy(this, duplicate);
1509 continue;
1510 }
1511 peer_cfg = duplicate->get_peer_cfg(duplicate);
1512 if (peer_cfg && peer_cfg->equals(peer_cfg, ike_sa->get_peer_cfg(ike_sa)))
1513 {
1514 switch (duplicate->get_state(duplicate))
1515 {
1516 case IKE_ESTABLISHED:
1517 case IKE_REKEYING:
1518 switch (policy)
1519 {
1520 case UNIQUE_REPLACE:
1521 DBG1(DBG_IKE, "deleting duplicate IKE_SA for peer "
1522 "'%Y' due to uniqueness policy", other);
1523 status = duplicate->delete(duplicate);
1524 break;
1525 case UNIQUE_KEEP:
1526 cancel = TRUE;
1527 /* we keep the first IKE_SA and delete all
1528 * other duplicates that might exist */
1529 policy = UNIQUE_REPLACE;
1530 break;
1531 default:
1532 break;
1533 }
1534 break;
1535 default:
1536 break;
1537 }
1538 }
1539 if (status == DESTROY_ME)
1540 {
1541 checkin_and_destroy(this, duplicate);
1542 }
1543 else
1544 {
1545 checkin(this, duplicate);
1546 }
1547 }
1548 enumerator->destroy(enumerator);
1549 duplicate_ids->destroy_offset(duplicate_ids, offsetof(ike_sa_id_t, destroy));
1550 /* reset thread's current IKE_SA after checkin */
1551 charon->bus->set_sa(charon->bus, ike_sa);
1552 return cancel;
1553 }
1554
1555 METHOD(ike_sa_manager_t, has_contact, bool,
1556 private_ike_sa_manager_t *this, identification_t *me,
1557 identification_t *other, int family)
1558 {
1559 linked_list_t *list;
1560 u_int row, segment;
1561 rwlock_t *lock;
1562 bool found = FALSE;
1563
1564 row = chunk_hash_inc(other->get_encoding(other),
1565 chunk_hash(me->get_encoding(me))) & this->table_mask;
1566 segment = row & this->segment_mask;
1567 lock = this->connected_peers_segments[segment & this->segment_mask].lock;
1568 lock->read_lock(lock);
1569 list = this->connected_peers_table[row];
1570 if (list)
1571 {
1572 if (list->find_first(list, (linked_list_match_t)connected_peers_match,
1573 NULL, me, other, family) == SUCCESS)
1574 {
1575 found = TRUE;
1576 }
1577 }
1578 lock->unlock(lock);
1579
1580 return found;
1581 }
1582
1583 METHOD(ike_sa_manager_t, get_count, u_int,
1584 private_ike_sa_manager_t *this)
1585 {
1586 u_int segment, count = 0;
1587 mutex_t *mutex;
1588
1589 for (segment = 0; segment < this->segment_count; segment++)
1590 {
1591 mutex = this->segments[segment & this->segment_mask].mutex;
1592 mutex->lock(mutex);
1593 count += this->segments[segment].count;
1594 mutex->unlock(mutex);
1595 }
1596 return count;
1597 }
1598
1599 METHOD(ike_sa_manager_t, get_half_open_count, u_int,
1600 private_ike_sa_manager_t *this, host_t *ip)
1601 {
1602 linked_list_t *list;
1603 u_int segment, row;
1604 rwlock_t *lock;
1605 chunk_t addr;
1606 u_int count = 0;
1607
1608 if (ip)
1609 {
1610 addr = ip->get_address(ip);
1611 row = chunk_hash(addr) & this->table_mask;
1612 segment = row & this->segment_mask;
1613 lock = this->half_open_segments[segment & this->segment_mask].lock;
1614 lock->read_lock(lock);
1615 if ((list = this->half_open_table[row]) != NULL)
1616 {
1617 half_open_t *current;
1618
1619 if (list->find_first(list, (linked_list_match_t)half_open_match,
1620 (void**)&current, &addr) == SUCCESS)
1621 {
1622 count = current->count;
1623 }
1624 }
1625 lock->unlock(lock);
1626 }
1627 else
1628 {
1629 for (segment = 0; segment < this->segment_count; segment++)
1630 {
1631 lock = this->half_open_segments[segment & this->segment_mask].lock;
1632 lock->read_lock(lock);
1633 count += this->half_open_segments[segment].count;
1634 lock->unlock(lock);
1635 }
1636 }
1637 return count;
1638 }
1639
1640 METHOD(ike_sa_manager_t, flush, void,
1641 private_ike_sa_manager_t *this)
1642 {
1643 /* destroy all list entries */
1644 enumerator_t *enumerator;
1645 entry_t *entry;
1646 u_int segment;
1647
1648 lock_all_segments(this);
1649 DBG2(DBG_MGR, "going to destroy IKE_SA manager and all managed IKE_SA's");
1650 /* Step 1: drive out all waiting threads */
1651 DBG2(DBG_MGR, "set driveout flags for all stored IKE_SA's");
1652 enumerator = create_table_enumerator(this);
1653 while (enumerator->enumerate(enumerator, &entry, &segment))
1654 {
1655 /* do not accept new threads, drive out waiting threads */
1656 entry->driveout_new_threads = TRUE;
1657 entry->driveout_waiting_threads = TRUE;
1658 }
1659 enumerator->destroy(enumerator);
1660 DBG2(DBG_MGR, "wait for all threads to leave IKE_SA's");
1661 /* Step 2: wait until all are gone */
1662 enumerator = create_table_enumerator(this);
1663 while (enumerator->enumerate(enumerator, &entry, &segment))
1664 {
1665 while (entry->waiting_threads || entry->checked_out)
1666 {
1667 /* wake up all */
1668 entry->condvar->broadcast(entry->condvar);
1669 /* go sleeping until they are gone */
1670 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
1671 }
1672 }
1673 enumerator->destroy(enumerator);
1674 DBG2(DBG_MGR, "delete all IKE_SA's");
1675 /* Step 3: initiate deletion of all IKE_SAs */
1676 enumerator = create_table_enumerator(this);
1677 while (enumerator->enumerate(enumerator, &entry, &segment))
1678 {
1679 charon->bus->set_sa(charon->bus, entry->ike_sa);
1680 /* as the delete never gets processed, fire down events */
1681 switch (entry->ike_sa->get_state(entry->ike_sa))
1682 {
1683 case IKE_ESTABLISHED:
1684 case IKE_REKEYING:
1685 case IKE_DELETING:
1686 charon->bus->ike_updown(charon->bus, entry->ike_sa, FALSE);
1687 break;
1688 default:
1689 break;
1690 }
1691 entry->ike_sa->delete(entry->ike_sa);
1692 }
1693 enumerator->destroy(enumerator);
1694
1695 DBG2(DBG_MGR, "destroy all entries");
1696 /* Step 4: destroy all entries */
1697 enumerator = create_table_enumerator(this);
1698 while (enumerator->enumerate(enumerator, &entry, &segment))
1699 {
1700 charon->bus->set_sa(charon->bus, entry->ike_sa);
1701 if (entry->half_open)
1702 {
1703 remove_half_open(this, entry);
1704 }
1705 if (entry->my_id && entry->other_id)
1706 {
1707 remove_connected_peers(this, entry);
1708 }
1709 remove_entry_at((private_enumerator_t*)enumerator);
1710 entry_destroy(entry);
1711 }
1712 enumerator->destroy(enumerator);
1713 charon->bus->set_sa(charon->bus, NULL);
1714 unlock_all_segments(this);
1715
1716 this->rng->destroy(this->rng);
1717 this->rng = NULL;
1718 this->hasher->destroy(this->hasher);
1719 this->hasher = NULL;
1720 }
1721
1722 METHOD(ike_sa_manager_t, destroy, void,
1723 private_ike_sa_manager_t *this)
1724 {
1725 u_int i;
1726
1727 for (i = 0; i < this->table_size; i++)
1728 {
1729 DESTROY_IF(this->ike_sa_table[i]);
1730 DESTROY_IF(this->half_open_table[i]);
1731 DESTROY_IF(this->connected_peers_table[i]);
1732 }
1733 free(this->ike_sa_table);
1734 free(this->half_open_table);
1735 free(this->connected_peers_table);
1736 for (i = 0; i < this->segment_count; i++)
1737 {
1738 this->segments[i].mutex->destroy(this->segments[i].mutex);
1739 this->half_open_segments[i].lock->destroy(this->half_open_segments[i].lock);
1740 this->connected_peers_segments[i].lock->destroy(this->connected_peers_segments[i].lock);
1741 }
1742 free(this->segments);
1743 free(this->half_open_segments);
1744 free(this->connected_peers_segments);
1745
1746 free(this);
1747 }
1748
1749 /**
1750 * This function returns the next-highest power of two for the given number.
1751 * The algorithm works by setting all bits on the right-hand side of the most
1752 * significant 1 to 1 and then increments the whole number so it rolls over
1753 * to the nearest power of two. Note: returns 0 for n == 0
1754 */
1755 static u_int get_nearest_powerof2(u_int n)
1756 {
1757 u_int i;
1758
1759 --n;
1760 for (i = 1; i < sizeof(u_int) * 8; i <<= 1)
1761 {
1762 n |= n >> i;
1763 }
1764 return ++n;
1765 }
1766
1767 /*
1768 * Described in header.
1769 */
1770 ike_sa_manager_t *ike_sa_manager_create()
1771 {
1772 private_ike_sa_manager_t *this;
1773 u_int i;
1774
1775 INIT(this,
1776 .public = {
1777 .checkout = _checkout,
1778 .checkout_new = _checkout_new,
1779 .checkout_by_message = _checkout_by_message,
1780 .checkout_by_config = _checkout_by_config,
1781 .checkout_by_id = _checkout_by_id,
1782 .checkout_by_name = _checkout_by_name,
1783 .check_uniqueness = _check_uniqueness,
1784 .has_contact = _has_contact,
1785 .create_enumerator = _create_enumerator,
1786 .checkin = _checkin,
1787 .checkin_and_destroy = _checkin_and_destroy,
1788 .get_count = _get_count,
1789 .get_half_open_count = _get_half_open_count,
1790 .flush = _flush,
1791 .destroy = _destroy,
1792 },
1793 );
1794
1795 this->hasher = lib->crypto->create_hasher(lib->crypto, HASH_PREFERRED);
1796 if (this->hasher == NULL)
1797 {
1798 DBG1(DBG_MGR, "manager initialization failed, no hasher supported");
1799 free(this);
1800 return NULL;
1801 }
1802 this->rng = lib->crypto->create_rng(lib->crypto, RNG_WEAK);
1803 if (this->rng == NULL)
1804 {
1805 DBG1(DBG_MGR, "manager initialization failed, no RNG supported");
1806 this->hasher->destroy(this->hasher);
1807 free(this);
1808 return NULL;
1809 }
1810
1811 this->table_size = get_nearest_powerof2(lib->settings->get_int(lib->settings,
1812 "charon.ikesa_table_size", DEFAULT_HASHTABLE_SIZE));
1813 this->table_size = max(1, min(this->table_size, MAX_HASHTABLE_SIZE));
1814 this->table_mask = this->table_size - 1;
1815
1816 this->segment_count = get_nearest_powerof2(lib->settings->get_int(lib->settings,
1817 "charon.ikesa_table_segments", DEFAULT_SEGMENT_COUNT));
1818 this->segment_count = max(1, min(this->segment_count, this->table_size));
1819 this->segment_mask = this->segment_count - 1;
1820 this->ike_sa_table = calloc(this->table_size, sizeof(linked_list_t*));
1821
1822 this->segments = (segment_t*)calloc(this->segment_count, sizeof(segment_t));
1823 for (i = 0; i < this->segment_count; i++)
1824 {
1825 this->segments[i].mutex = mutex_create(MUTEX_TYPE_RECURSIVE);
1826 this->segments[i].count = 0;
1827 }
1828
1829 /* we use the same table parameters for the table to track half-open SAs */
1830 this->half_open_table = calloc(this->table_size, sizeof(linked_list_t*));
1831 this->half_open_segments = calloc(this->segment_count, sizeof(shareable_segment_t));
1832 for (i = 0; i < this->segment_count; i++)
1833 {
1834 this->half_open_segments[i].lock = rwlock_create(RWLOCK_TYPE_DEFAULT);
1835 this->half_open_segments[i].count = 0;
1836 }
1837
1838 /* also for the hash table used for duplicate tests */
1839 this->connected_peers_table = calloc(this->table_size, sizeof(linked_list_t*));
1840 this->connected_peers_segments = calloc(this->segment_count, sizeof(shareable_segment_t));
1841 for (i = 0; i < this->segment_count; i++)
1842 {
1843 this->connected_peers_segments[i].lock = rwlock_create(RWLOCK_TYPE_DEFAULT);
1844 this->connected_peers_segments[i].count = 0;
1845 }
1846
1847 this->reuse_ikesa = lib->settings->get_bool(lib->settings,
1848 "charon.reuse_ikesa", TRUE);
1849 return &this->public;
1850 }