Don't clone chunk in message.get_packet_data
[strongswan.git] / src / libcharon / sa / ike_sa_manager.c
1 /*
2 * Copyright (C) 2005-2011 Martin Willi
3 * Copyright (C) 2011 revosec AG
4 * Copyright (C) 2008 Tobias Brunner
5 * Copyright (C) 2005 Jan Hutter
6 * Hochschule fuer Technik Rapperswil
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 */
18
19 #include <string.h>
20
21 #include "ike_sa_manager.h"
22
23 #include <daemon.h>
24 #include <sa/ike_sa_id.h>
25 #include <bus/bus.h>
26 #include <threading/condvar.h>
27 #include <threading/mutex.h>
28 #include <threading/rwlock.h>
29 #include <utils/linked_list.h>
30 #include <crypto/hashers/hasher.h>
31
32 /* the default size of the hash table (MUST be a power of 2) */
33 #define DEFAULT_HASHTABLE_SIZE 1
34
35 /* the maximum size of the hash table (MUST be a power of 2) */
36 #define MAX_HASHTABLE_SIZE (1 << 30)
37
38 /* the default number of segments (MUST be a power of 2) */
39 #define DEFAULT_SEGMENT_COUNT 1
40
41 typedef struct entry_t entry_t;
42
43 /**
44 * An entry in the linked list, contains IKE_SA, locking and lookup data.
45 */
46 struct entry_t {
47
48 /**
49 * Number of threads waiting for this ike_sa_t object.
50 */
51 int waiting_threads;
52
53 /**
54 * Condvar where threads can wait until ike_sa_t object is free for use again.
55 */
56 condvar_t *condvar;
57
58 /**
59 * Is this ike_sa currently checked out?
60 */
61 bool checked_out;
62
63 /**
64 * Does this SA drives out new threads?
65 */
66 bool driveout_new_threads;
67
68 /**
69 * Does this SA drives out waiting threads?
70 */
71 bool driveout_waiting_threads;
72
73 /**
74 * Identification of an IKE_SA (SPIs).
75 */
76 ike_sa_id_t *ike_sa_id;
77
78 /**
79 * The contained ike_sa_t object.
80 */
81 ike_sa_t *ike_sa;
82
83 /**
84 * hash of the IKE_SA_INIT message, used to detect retransmissions
85 */
86 chunk_t init_hash;
87
88 /**
89 * remote host address, required for DoS detection and duplicate
90 * checking (host with same my_id and other_id is *not* considered
91 * a duplicate if the address family differs)
92 */
93 host_t *other;
94
95 /**
96 * As responder: Is this SA half-open?
97 */
98 bool half_open;
99
100 /**
101 * own identity, required for duplicate checking
102 */
103 identification_t *my_id;
104
105 /**
106 * remote identity, required for duplicate checking
107 */
108 identification_t *other_id;
109
110 /**
111 * message ID currently processing, if any
112 */
113 u_int32_t message_id;
114 };
115
116 /**
117 * Implementation of entry_t.destroy.
118 */
119 static status_t entry_destroy(entry_t *this)
120 {
121 /* also destroy IKE SA */
122 this->ike_sa->destroy(this->ike_sa);
123 this->ike_sa_id->destroy(this->ike_sa_id);
124 chunk_free(&this->init_hash);
125 DESTROY_IF(this->other);
126 DESTROY_IF(this->my_id);
127 DESTROY_IF(this->other_id);
128 this->condvar->destroy(this->condvar);
129 free(this);
130 return SUCCESS;
131 }
132
133 /**
134 * Creates a new entry for the ike_sa_t list.
135 */
136 static entry_t *entry_create()
137 {
138 entry_t *this = malloc_thing(entry_t);
139
140 this->waiting_threads = 0;
141 this->condvar = condvar_create(CONDVAR_TYPE_DEFAULT);
142
143 /* we set checkout flag when we really give it out */
144 this->checked_out = FALSE;
145 this->driveout_new_threads = FALSE;
146 this->driveout_waiting_threads = FALSE;
147 this->message_id = -1;
148 this->init_hash = chunk_empty;
149 this->other = NULL;
150 this->half_open = FALSE;
151 this->my_id = NULL;
152 this->other_id = NULL;
153 this->ike_sa_id = NULL;
154 this->ike_sa = NULL;
155
156 return this;
157 }
158
159 /**
160 * Function that matches entry_t objects by initiator SPI and the hash of the
161 * IKE_SA_INIT message.
162 */
163 static bool entry_match_by_hash(entry_t *entry, ike_sa_id_t *id, chunk_t *hash)
164 {
165 return id->get_responder_spi(id) == 0 &&
166 id->is_initiator(id) == entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
167 id->get_initiator_spi(id) == entry->ike_sa_id->get_initiator_spi(entry->ike_sa_id) &&
168 chunk_equals(*hash, entry->init_hash);
169 }
170
171 /**
172 * Function that matches entry_t objects by ike_sa_id_t.
173 */
174 static bool entry_match_by_id(entry_t *entry, ike_sa_id_t *id)
175 {
176 if (id->equals(id, entry->ike_sa_id))
177 {
178 return TRUE;
179 }
180 if ((id->get_responder_spi(id) == 0 ||
181 entry->ike_sa_id->get_responder_spi(entry->ike_sa_id) == 0) &&
182 id->is_initiator(id) == entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
183 id->get_initiator_spi(id) == entry->ike_sa_id->get_initiator_spi(entry->ike_sa_id))
184 {
185 /* this is TRUE for IKE_SAs that we initiated but have not yet received a response */
186 return TRUE;
187 }
188 return FALSE;
189 }
190
191 /**
192 * Function that matches entry_t objects by ike_sa_t pointers.
193 */
194 static bool entry_match_by_sa(entry_t *entry, ike_sa_t *ike_sa)
195 {
196 return entry->ike_sa == ike_sa;
197 }
198
199 /**
200 * Hash function for ike_sa_id_t objects.
201 */
202 static u_int ike_sa_id_hash(ike_sa_id_t *ike_sa_id)
203 {
204 /* we always use initiator spi as key */
205 return ike_sa_id->get_initiator_spi(ike_sa_id);
206 }
207
208 typedef struct half_open_t half_open_t;
209
210 /**
211 * Struct to manage half-open IKE_SAs per peer.
212 */
213 struct half_open_t {
214 /** chunk of remote host address */
215 chunk_t other;
216
217 /** the number of half-open IKE_SAs with that host */
218 u_int count;
219 };
220
221 /**
222 * Destroys a half_open_t object.
223 */
224 static void half_open_destroy(half_open_t *this)
225 {
226 chunk_free(&this->other);
227 free(this);
228 }
229
230 /**
231 * Function that matches half_open_t objects by the given IP address chunk.
232 */
233 static bool half_open_match(half_open_t *half_open, chunk_t *addr)
234 {
235 return chunk_equals(*addr, half_open->other);
236 }
237
238 typedef struct connected_peers_t connected_peers_t;
239
240 struct connected_peers_t {
241 /** own identity */
242 identification_t *my_id;
243
244 /** remote identity */
245 identification_t *other_id;
246
247 /** ip address family of peer */
248 int family;
249
250 /** list of ike_sa_id_t objects of IKE_SAs between the two identities */
251 linked_list_t *sas;
252 };
253
254 static void connected_peers_destroy(connected_peers_t *this)
255 {
256 this->my_id->destroy(this->my_id);
257 this->other_id->destroy(this->other_id);
258 this->sas->destroy(this->sas);
259 free(this);
260 }
261
262 /**
263 * Function that matches connected_peers_t objects by the given ids.
264 */
265 static bool connected_peers_match(connected_peers_t *connected_peers,
266 identification_t *my_id, identification_t *other_id,
267 uintptr_t family)
268 {
269 return my_id->equals(my_id, connected_peers->my_id) &&
270 other_id->equals(other_id, connected_peers->other_id) &&
271 family == connected_peers->family;
272 }
273
274 typedef struct segment_t segment_t;
275
276 /**
277 * Struct to manage segments of the hash table.
278 */
279 struct segment_t {
280 /** mutex to access a segment exclusively */
281 mutex_t *mutex;
282
283 /** the number of entries in this segment */
284 u_int count;
285 };
286
287 typedef struct shareable_segment_t shareable_segment_t;
288
289 /**
290 * Struct to manage segments of the "half-open" and "connected peers" hash tables.
291 */
292 struct shareable_segment_t {
293 /** rwlock to access a segment non-/exclusively */
294 rwlock_t *lock;
295
296 /** the number of entries in this segment - in case of the "half-open table"
297 * it's the sum of all half_open_t.count in a segment. */
298 u_int count;
299 };
300
301 typedef struct private_ike_sa_manager_t private_ike_sa_manager_t;
302
303 /**
304 * Additional private members of ike_sa_manager_t.
305 */
306 struct private_ike_sa_manager_t {
307 /**
308 * Public interface of ike_sa_manager_t.
309 */
310 ike_sa_manager_t public;
311
312 /**
313 * Hash table with entries for the ike_sa_t objects.
314 */
315 linked_list_t **ike_sa_table;
316
317 /**
318 * The size of the hash table.
319 */
320 u_int table_size;
321
322 /**
323 * Mask to map the hashes to table rows.
324 */
325 u_int table_mask;
326
327 /**
328 * Segments of the hash table.
329 */
330 segment_t *segments;
331
332 /**
333 * The number of segments.
334 */
335 u_int segment_count;
336
337 /**
338 * Mask to map a table row to a segment.
339 */
340 u_int segment_mask;
341
342 /**
343 * Hash table with half_open_t objects.
344 */
345 linked_list_t **half_open_table;
346
347 /**
348 * Segments of the "half-open" hash table.
349 */
350 shareable_segment_t *half_open_segments;
351
352 /**
353 * Hash table with connected_peers_t objects.
354 */
355 linked_list_t **connected_peers_table;
356
357 /**
358 * Segments of the "connected peers" hash table.
359 */
360 shareable_segment_t *connected_peers_segments;
361
362 /**
363 * RNG to get random SPIs for our side
364 */
365 rng_t *rng;
366
367 /**
368 * SHA1 hasher for IKE_SA_INIT retransmit detection
369 */
370 hasher_t *hasher;
371
372 /**
373 * reuse existing IKE_SAs in checkout_by_config
374 */
375 bool reuse_ikesa;
376 };
377
378 /**
379 * Acquire a lock to access the segment of the table row with the given index.
380 * It also works with the segment index directly.
381 */
382 static void lock_single_segment(private_ike_sa_manager_t *this, u_int index)
383 {
384 mutex_t *lock = this->segments[index & this->segment_mask].mutex;
385
386 lock->lock(lock);
387 }
388
389 /**
390 * Release the lock required to access the segment of the table row with the given index.
391 * It also works with the segment index directly.
392 */
393 static void unlock_single_segment(private_ike_sa_manager_t *this, u_int index)
394 {
395 mutex_t *lock = this->segments[index & this->segment_mask].mutex;
396
397 lock->unlock(lock);
398 }
399
400 /**
401 * Lock all segments
402 */
403 static void lock_all_segments(private_ike_sa_manager_t *this)
404 {
405 u_int i;
406
407 for (i = 0; i < this->segment_count; i++)
408 {
409 this->segments[i].mutex->lock(this->segments[i].mutex);
410 }
411 }
412
413 /**
414 * Unlock all segments
415 */
416 static void unlock_all_segments(private_ike_sa_manager_t *this)
417 {
418 u_int i;
419
420 for (i = 0; i < this->segment_count; i++)
421 {
422 this->segments[i].mutex->unlock(this->segments[i].mutex);
423 }
424 }
425
426 typedef struct private_enumerator_t private_enumerator_t;
427
428 /**
429 * hash table enumerator implementation
430 */
431 struct private_enumerator_t {
432
433 /**
434 * implements enumerator interface
435 */
436 enumerator_t enumerator;
437
438 /**
439 * associated ike_sa_manager_t
440 */
441 private_ike_sa_manager_t *manager;
442
443 /**
444 * current segment index
445 */
446 u_int segment;
447
448 /**
449 * currently enumerating entry
450 */
451 entry_t *entry;
452
453 /**
454 * current table row index
455 */
456 u_int row;
457
458 /**
459 * enumerator for the current table row
460 */
461 enumerator_t *current;
462 };
463
464 METHOD(enumerator_t, enumerate, bool,
465 private_enumerator_t *this, entry_t **entry, u_int *segment)
466 {
467 if (this->entry)
468 {
469 this->entry->condvar->signal(this->entry->condvar);
470 this->entry = NULL;
471 }
472 while (this->segment < this->manager->segment_count)
473 {
474 while (this->row < this->manager->table_size)
475 {
476 if (this->current)
477 {
478 entry_t *item;
479
480 if (this->current->enumerate(this->current, &item))
481 {
482 *entry = this->entry = item;
483 *segment = this->segment;
484 return TRUE;
485 }
486 this->current->destroy(this->current);
487 this->current = NULL;
488 unlock_single_segment(this->manager, this->segment);
489 }
490 else
491 {
492 linked_list_t *list;
493
494 lock_single_segment(this->manager, this->segment);
495 if ((list = this->manager->ike_sa_table[this->row]) != NULL &&
496 list->get_count(list))
497 {
498 this->current = list->create_enumerator(list);
499 continue;
500 }
501 unlock_single_segment(this->manager, this->segment);
502 }
503 this->row += this->manager->segment_count;
504 }
505 this->segment++;
506 this->row = this->segment;
507 }
508 return FALSE;
509 }
510
511 METHOD(enumerator_t, enumerator_destroy, void,
512 private_enumerator_t *this)
513 {
514 if (this->entry)
515 {
516 this->entry->condvar->signal(this->entry->condvar);
517 }
518 if (this->current)
519 {
520 this->current->destroy(this->current);
521 unlock_single_segment(this->manager, this->segment);
522 }
523 free(this);
524 }
525
526 /**
527 * Creates an enumerator to enumerate the entries in the hash table.
528 */
529 static enumerator_t* create_table_enumerator(private_ike_sa_manager_t *this)
530 {
531 private_enumerator_t *enumerator;
532
533 INIT(enumerator,
534 .enumerator = {
535 .enumerate = (void*)_enumerate,
536 .destroy = _enumerator_destroy,
537 },
538 .manager = this,
539 );
540 return &enumerator->enumerator;
541 }
542
543 /**
544 * Put an entry into the hash table.
545 * Note: The caller has to unlock the returned segment.
546 */
547 static u_int put_entry(private_ike_sa_manager_t *this, entry_t *entry)
548 {
549 linked_list_t *list;
550 u_int row, segment;
551
552 row = ike_sa_id_hash(entry->ike_sa_id) & this->table_mask;
553 segment = row & this->segment_mask;
554
555 lock_single_segment(this, segment);
556 list = this->ike_sa_table[row];
557 if (!list)
558 {
559 list = this->ike_sa_table[row] = linked_list_create();
560 }
561 list->insert_last(list, entry);
562 this->segments[segment].count++;
563 return segment;
564 }
565
566 /**
567 * Remove an entry from the hash table.
568 * Note: The caller MUST have a lock on the segment of this entry.
569 */
570 static void remove_entry(private_ike_sa_manager_t *this, entry_t *entry)
571 {
572 linked_list_t *list;
573 u_int row, segment;
574
575 row = ike_sa_id_hash(entry->ike_sa_id) & this->table_mask;
576 segment = row & this->segment_mask;
577 list = this->ike_sa_table[row];
578 if (list)
579 {
580 entry_t *current;
581 enumerator_t *enumerator;
582
583 enumerator = list->create_enumerator(list);
584 while (enumerator->enumerate(enumerator, &current))
585 {
586 if (current == entry)
587 {
588 list->remove_at(list, enumerator);
589 this->segments[segment].count--;
590 break;
591 }
592 }
593 enumerator->destroy(enumerator);
594 }
595 }
596
597 /**
598 * Remove the entry at the current enumerator position.
599 */
600 static void remove_entry_at(private_enumerator_t *this)
601 {
602 this->entry = NULL;
603 if (this->current)
604 {
605 linked_list_t *list = this->manager->ike_sa_table[this->row];
606 list->remove_at(list, this->current);
607 this->manager->segments[this->segment].count--;
608 }
609 }
610
611 /**
612 * Find an entry using the provided match function to compare the entries for
613 * equality.
614 */
615 static status_t get_entry_by_match_function(private_ike_sa_manager_t *this,
616 ike_sa_id_t *ike_sa_id, entry_t **entry, u_int *segment,
617 linked_list_match_t match, void *p1, void *p2)
618 {
619 entry_t *current;
620 linked_list_t *list;
621 u_int row, seg;
622
623 row = ike_sa_id_hash(ike_sa_id) & this->table_mask;
624 seg = row & this->segment_mask;
625
626 lock_single_segment(this, seg);
627 list = this->ike_sa_table[row];
628 if (list)
629 {
630 if (list->find_first(list, match, (void**)&current, p1, p2) == SUCCESS)
631 {
632 *entry = current;
633 *segment = seg;
634 /* the locked segment has to be unlocked by the caller */
635 return SUCCESS;
636 }
637 }
638 unlock_single_segment(this, seg);
639 return NOT_FOUND;
640 }
641
642 /**
643 * Find an entry by ike_sa_id_t.
644 * Note: On SUCCESS, the caller has to unlock the segment.
645 */
646 static status_t get_entry_by_id(private_ike_sa_manager_t *this,
647 ike_sa_id_t *ike_sa_id, entry_t **entry, u_int *segment)
648 {
649 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
650 (linked_list_match_t)entry_match_by_id, ike_sa_id, NULL);
651 }
652
653 /**
654 * Find an entry by initiator SPI and IKE_SA_INIT hash.
655 * Note: On SUCCESS, the caller has to unlock the segment.
656 */
657 static status_t get_entry_by_hash(private_ike_sa_manager_t *this,
658 ike_sa_id_t *ike_sa_id, chunk_t hash, entry_t **entry, u_int *segment)
659 {
660 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
661 (linked_list_match_t)entry_match_by_hash, ike_sa_id, &hash);
662 }
663
664 /**
665 * Find an entry by IKE_SA pointer.
666 * Note: On SUCCESS, the caller has to unlock the segment.
667 */
668 static status_t get_entry_by_sa(private_ike_sa_manager_t *this,
669 ike_sa_id_t *ike_sa_id, ike_sa_t *ike_sa, entry_t **entry, u_int *segment)
670 {
671 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
672 (linked_list_match_t)entry_match_by_sa, ike_sa, NULL);
673 }
674
675 /**
676 * Wait until no other thread is using an IKE_SA, return FALSE if entry not
677 * acquirable.
678 */
679 static bool wait_for_entry(private_ike_sa_manager_t *this, entry_t *entry,
680 u_int segment)
681 {
682 if (entry->driveout_new_threads)
683 {
684 /* we are not allowed to get this */
685 return FALSE;
686 }
687 while (entry->checked_out && !entry->driveout_waiting_threads)
688 {
689 /* so wait until we can get it for us.
690 * we register us as waiting. */
691 entry->waiting_threads++;
692 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
693 entry->waiting_threads--;
694 }
695 /* hm, a deletion request forbids us to get this SA, get next one */
696 if (entry->driveout_waiting_threads)
697 {
698 /* we must signal here, others may be waiting on it, too */
699 entry->condvar->signal(entry->condvar);
700 return FALSE;
701 }
702 return TRUE;
703 }
704
705 /**
706 * Put a half-open SA into the hash table.
707 */
708 static void put_half_open(private_ike_sa_manager_t *this, entry_t *entry)
709 {
710 half_open_t *half_open = NULL;
711 linked_list_t *list;
712 chunk_t addr;
713 u_int row, segment;
714 rwlock_t *lock;
715
716 addr = entry->other->get_address(entry->other);
717 row = chunk_hash(addr) & this->table_mask;
718 segment = row & this->segment_mask;
719 lock = this->half_open_segments[segment].lock;
720 lock->write_lock(lock);
721 list = this->half_open_table[row];
722 if (list)
723 {
724 half_open_t *current;
725
726 if (list->find_first(list, (linked_list_match_t)half_open_match,
727 (void**)&current, &addr) == SUCCESS)
728 {
729 half_open = current;
730 half_open->count++;
731 this->half_open_segments[segment].count++;
732 }
733 }
734 else
735 {
736 list = this->half_open_table[row] = linked_list_create();
737 }
738
739 if (!half_open)
740 {
741 INIT(half_open,
742 .other = chunk_clone(addr),
743 .count = 1,
744 );
745 list->insert_last(list, half_open);
746 this->half_open_segments[segment].count++;
747 }
748 lock->unlock(lock);
749 }
750
751 /**
752 * Remove a half-open SA from the hash table.
753 */
754 static void remove_half_open(private_ike_sa_manager_t *this, entry_t *entry)
755 {
756 linked_list_t *list;
757 chunk_t addr;
758 u_int row, segment;
759 rwlock_t *lock;
760
761 addr = entry->other->get_address(entry->other);
762 row = chunk_hash(addr) & this->table_mask;
763 segment = row & this->segment_mask;
764 lock = this->half_open_segments[segment].lock;
765 lock->write_lock(lock);
766 list = this->half_open_table[row];
767 if (list)
768 {
769 half_open_t *current;
770 enumerator_t *enumerator;
771
772 enumerator = list->create_enumerator(list);
773 while (enumerator->enumerate(enumerator, &current))
774 {
775 if (half_open_match(current, &addr))
776 {
777 if (--current->count == 0)
778 {
779 list->remove_at(list, enumerator);
780 half_open_destroy(current);
781 }
782 this->half_open_segments[segment].count--;
783 break;
784 }
785 }
786 enumerator->destroy(enumerator);
787 }
788 lock->unlock(lock);
789 }
790
791 /**
792 * Put an SA between two peers into the hash table.
793 */
794 static void put_connected_peers(private_ike_sa_manager_t *this, entry_t *entry)
795 {
796 connected_peers_t *connected_peers = NULL;
797 chunk_t my_id, other_id;
798 linked_list_t *list;
799 u_int row, segment;
800 rwlock_t *lock;
801
802 my_id = entry->my_id->get_encoding(entry->my_id);
803 other_id = entry->other_id->get_encoding(entry->other_id);
804 row = chunk_hash_inc(other_id, chunk_hash(my_id)) & this->table_mask;
805 segment = row & this->segment_mask;
806 lock = this->connected_peers_segments[segment].lock;
807 lock->write_lock(lock);
808 list = this->connected_peers_table[row];
809 if (list)
810 {
811 connected_peers_t *current;
812
813 if (list->find_first(list, (linked_list_match_t)connected_peers_match,
814 (void**)&current, entry->my_id, entry->other_id,
815 (uintptr_t)entry->other->get_family(entry->other)) == SUCCESS)
816 {
817 connected_peers = current;
818 if (connected_peers->sas->find_first(connected_peers->sas,
819 (linked_list_match_t)entry->ike_sa_id->equals,
820 NULL, entry->ike_sa_id) == SUCCESS)
821 {
822 lock->unlock(lock);
823 return;
824 }
825 }
826 }
827 else
828 {
829 list = this->connected_peers_table[row] = linked_list_create();
830 }
831
832 if (!connected_peers)
833 {
834 INIT(connected_peers,
835 .my_id = entry->my_id->clone(entry->my_id),
836 .other_id = entry->other_id->clone(entry->other_id),
837 .family = entry->other->get_family(entry->other),
838 .sas = linked_list_create(),
839 );
840 list->insert_last(list, connected_peers);
841 }
842 connected_peers->sas->insert_last(connected_peers->sas,
843 entry->ike_sa_id->clone(entry->ike_sa_id));
844 this->connected_peers_segments[segment].count++;
845 lock->unlock(lock);
846 }
847
848 /**
849 * Remove an SA between two peers from the hash table.
850 */
851 static void remove_connected_peers(private_ike_sa_manager_t *this, entry_t *entry)
852 {
853 chunk_t my_id, other_id;
854 linked_list_t *list;
855 u_int row, segment;
856 rwlock_t *lock;
857
858 my_id = entry->my_id->get_encoding(entry->my_id);
859 other_id = entry->other_id->get_encoding(entry->other_id);
860 row = chunk_hash_inc(other_id, chunk_hash(my_id)) & this->table_mask;
861 segment = row & this->segment_mask;
862
863 lock = this->connected_peers_segments[segment].lock;
864 lock->write_lock(lock);
865 list = this->connected_peers_table[row];
866 if (list)
867 {
868 connected_peers_t *current;
869 enumerator_t *enumerator;
870
871 enumerator = list->create_enumerator(list);
872 while (enumerator->enumerate(enumerator, &current))
873 {
874 if (connected_peers_match(current, entry->my_id, entry->other_id,
875 (uintptr_t)entry->other->get_family(entry->other)))
876 {
877 ike_sa_id_t *ike_sa_id;
878 enumerator_t *inner;
879
880 inner = current->sas->create_enumerator(current->sas);
881 while (inner->enumerate(inner, &ike_sa_id))
882 {
883 if (ike_sa_id->equals(ike_sa_id, entry->ike_sa_id))
884 {
885 current->sas->remove_at(current->sas, inner);
886 ike_sa_id->destroy(ike_sa_id);
887 this->connected_peers_segments[segment].count--;
888 break;
889 }
890 }
891 inner->destroy(inner);
892 if (current->sas->get_count(current->sas) == 0)
893 {
894 list->remove_at(list, enumerator);
895 connected_peers_destroy(current);
896 }
897 break;
898 }
899 }
900 enumerator->destroy(enumerator);
901 }
902 lock->unlock(lock);
903 }
904
905 /**
906 * Get a random SPI for new IKE_SAs
907 */
908 static u_int64_t get_spi(private_ike_sa_manager_t *this)
909 {
910 u_int64_t spi = 0;
911
912 if (this->rng)
913 {
914 this->rng->get_bytes(this->rng, sizeof(spi), (u_int8_t*)&spi);
915 }
916 return spi;
917 }
918
919 METHOD(ike_sa_manager_t, checkout, ike_sa_t*,
920 private_ike_sa_manager_t *this, ike_sa_id_t *ike_sa_id)
921 {
922 ike_sa_t *ike_sa = NULL;
923 entry_t *entry;
924 u_int segment;
925
926 DBG2(DBG_MGR, "checkout IKE_SA");
927
928 if (get_entry_by_id(this, ike_sa_id, &entry, &segment) == SUCCESS)
929 {
930 if (wait_for_entry(this, entry, segment))
931 {
932 entry->checked_out = TRUE;
933 ike_sa = entry->ike_sa;
934 DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
935 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
936 }
937 unlock_single_segment(this, segment);
938 }
939 charon->bus->set_sa(charon->bus, ike_sa);
940 return ike_sa;
941 }
942
943 METHOD(ike_sa_manager_t, checkout_new, ike_sa_t*,
944 private_ike_sa_manager_t* this, ike_version_t version, bool initiator)
945 {
946 ike_sa_id_t *ike_sa_id;
947 ike_sa_t *ike_sa;
948
949 if (initiator)
950 {
951 ike_sa_id = ike_sa_id_create(get_spi(this), 0, TRUE);
952 }
953 else
954 {
955 ike_sa_id = ike_sa_id_create(0, get_spi(this), FALSE);
956 }
957 ike_sa = ike_sa_create(ike_sa_id, version);
958 ike_sa_id->destroy(ike_sa_id);
959
960 DBG2(DBG_MGR, "created IKE_SA %s[%u]", ike_sa->get_name(ike_sa),
961 ike_sa->get_unique_id(ike_sa));
962
963 return ike_sa;
964 }
965
966 METHOD(ike_sa_manager_t, checkout_by_message, ike_sa_t*,
967 private_ike_sa_manager_t* this, message_t *message)
968 {
969 u_int segment;
970 entry_t *entry;
971 ike_sa_t *ike_sa = NULL;
972 ike_sa_id_t *id;
973 ike_version_t ike_version;
974 bool is_init = FALSE;
975
976 id = message->get_ike_sa_id(message);
977 id = id->clone(id);
978 id->switch_initiator(id);
979
980 DBG2(DBG_MGR, "checkout IKE_SA by message");
981
982 if (id->get_responder_spi(id) == 0)
983 {
984 if (message->get_major_version(message) == IKEV2_MAJOR_VERSION)
985 {
986 if (message->get_exchange_type(message) == IKE_SA_INIT &&
987 message->get_request(message))
988 {
989 ike_version = IKEV2;
990 is_init = TRUE;
991 }
992 }
993 else
994 {
995 if (message->get_exchange_type(message) == ID_PROT ||
996 message->get_exchange_type(message) == AGGRESSIVE)
997 {
998 ike_version = IKEV1;
999 is_init = TRUE;
1000 }
1001 }
1002 }
1003
1004 if (is_init && this->hasher)
1005 {
1006 /* First request. Check for an IKE_SA with such a message hash. */
1007 chunk_t hash;
1008
1009 this->hasher->allocate_hash(this->hasher,
1010 message->get_packet_data(message), &hash);
1011
1012 if (get_entry_by_hash(this, id, hash, &entry, &segment) == SUCCESS)
1013 {
1014 if (message->get_exchange_type(message) == IKE_SA_INIT &&
1015 entry->message_id == 0)
1016 {
1017 unlock_single_segment(this, segment);
1018 chunk_free(&hash);
1019 id->destroy(id);
1020 DBG1(DBG_MGR, "ignoring IKE_SA_INIT, already processing");
1021 return NULL;
1022 }
1023 else if (wait_for_entry(this, entry, segment))
1024 {
1025 entry->checked_out = TRUE;
1026 entry->message_id = message->get_message_id(message);
1027 ike_sa = entry->ike_sa;
1028 DBG2(DBG_MGR, "IKE_SA %s[%u] checked out by hash",
1029 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1030 }
1031 unlock_single_segment(this, segment);
1032 }
1033
1034 if (ike_sa == NULL)
1035 {
1036 /* no IKE_SA found, create a new one */
1037 id->set_responder_spi(id, get_spi(this));
1038 entry = entry_create();
1039 entry->ike_sa = ike_sa_create(id, ike_version);
1040 entry->ike_sa_id = id->clone(id);
1041
1042 segment = put_entry(this, entry);
1043 entry->checked_out = TRUE;
1044 unlock_single_segment(this, segment);
1045
1046 entry->message_id = message->get_message_id(message);
1047 entry->init_hash = hash;
1048 ike_sa = entry->ike_sa;
1049
1050 DBG2(DBG_MGR, "created IKE_SA %s[%u]",
1051 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1052 }
1053 else
1054 {
1055 chunk_free(&hash);
1056 DBG1(DBG_MGR, "ignoring message, no such IKE_SA");
1057 }
1058 id->destroy(id);
1059 charon->bus->set_sa(charon->bus, ike_sa);
1060 return ike_sa;
1061 }
1062
1063 if (get_entry_by_id(this, id, &entry, &segment) == SUCCESS)
1064 {
1065 /* only check out in IKEv2 if we are not already processing it */
1066 if (message->get_request(message) &&
1067 message->get_message_id(message) == entry->message_id)
1068 {
1069 DBG1(DBG_MGR, "ignoring request with ID %d, already processing",
1070 entry->message_id);
1071 }
1072 else if (wait_for_entry(this, entry, segment))
1073 {
1074 ike_sa_id_t *ike_id;
1075
1076 ike_id = entry->ike_sa->get_id(entry->ike_sa);
1077 entry->checked_out = TRUE;
1078 entry->message_id = message->get_message_id(message);
1079 if (ike_id->get_responder_spi(ike_id) == 0)
1080 {
1081 ike_id->set_responder_spi(ike_id, id->get_responder_spi(id));
1082 }
1083 ike_sa = entry->ike_sa;
1084 DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
1085 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1086 }
1087 unlock_single_segment(this, segment);
1088 }
1089 id->destroy(id);
1090 charon->bus->set_sa(charon->bus, ike_sa);
1091 return ike_sa;
1092 }
1093
1094 METHOD(ike_sa_manager_t, checkout_by_config, ike_sa_t*,
1095 private_ike_sa_manager_t *this, peer_cfg_t *peer_cfg)
1096 {
1097 enumerator_t *enumerator;
1098 entry_t *entry;
1099 ike_sa_t *ike_sa = NULL;
1100 peer_cfg_t *current_peer;
1101 ike_cfg_t *current_ike;
1102 u_int segment;
1103
1104 DBG2(DBG_MGR, "checkout IKE_SA by config");
1105
1106 if (!this->reuse_ikesa)
1107 { /* IKE_SA reuse disable by config */
1108 ike_sa = checkout_new(this, peer_cfg->get_ike_version(peer_cfg), TRUE);
1109 charon->bus->set_sa(charon->bus, ike_sa);
1110 return ike_sa;
1111 }
1112
1113 enumerator = create_table_enumerator(this);
1114 while (enumerator->enumerate(enumerator, &entry, &segment))
1115 {
1116 if (!wait_for_entry(this, entry, segment))
1117 {
1118 continue;
1119 }
1120 if (entry->ike_sa->get_state(entry->ike_sa) == IKE_DELETING)
1121 { /* skip IKE_SAs which are not usable */
1122 continue;
1123 }
1124
1125 current_peer = entry->ike_sa->get_peer_cfg(entry->ike_sa);
1126 if (current_peer && current_peer->equals(current_peer, peer_cfg))
1127 {
1128 current_ike = current_peer->get_ike_cfg(current_peer);
1129 if (current_ike->equals(current_ike, peer_cfg->get_ike_cfg(peer_cfg)))
1130 {
1131 entry->checked_out = TRUE;
1132 ike_sa = entry->ike_sa;
1133 DBG2(DBG_MGR, "found existing IKE_SA %u with a '%s' config",
1134 ike_sa->get_unique_id(ike_sa),
1135 current_peer->get_name(current_peer));
1136 break;
1137 }
1138 }
1139 }
1140 enumerator->destroy(enumerator);
1141
1142 if (!ike_sa)
1143 { /* no IKE_SA using such a config, hand out a new */
1144 ike_sa = checkout_new(this, peer_cfg->get_ike_version(peer_cfg), TRUE);
1145 }
1146 charon->bus->set_sa(charon->bus, ike_sa);
1147 return ike_sa;
1148 }
1149
1150 METHOD(ike_sa_manager_t, checkout_by_id, ike_sa_t*,
1151 private_ike_sa_manager_t *this, u_int32_t id, bool child)
1152 {
1153 enumerator_t *enumerator, *children;
1154 entry_t *entry;
1155 ike_sa_t *ike_sa = NULL;
1156 child_sa_t *child_sa;
1157 u_int segment;
1158
1159 DBG2(DBG_MGR, "checkout IKE_SA by ID");
1160
1161 enumerator = create_table_enumerator(this);
1162 while (enumerator->enumerate(enumerator, &entry, &segment))
1163 {
1164 if (wait_for_entry(this, entry, segment))
1165 {
1166 /* look for a child with such a reqid ... */
1167 if (child)
1168 {
1169 children = entry->ike_sa->create_child_sa_enumerator(entry->ike_sa);
1170 while (children->enumerate(children, (void**)&child_sa))
1171 {
1172 if (child_sa->get_reqid(child_sa) == id)
1173 {
1174 ike_sa = entry->ike_sa;
1175 break;
1176 }
1177 }
1178 children->destroy(children);
1179 }
1180 else /* ... or for a IKE_SA with such a unique id */
1181 {
1182 if (entry->ike_sa->get_unique_id(entry->ike_sa) == id)
1183 {
1184 ike_sa = entry->ike_sa;
1185 }
1186 }
1187 /* got one, return */
1188 if (ike_sa)
1189 {
1190 entry->checked_out = TRUE;
1191 DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
1192 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1193 break;
1194 }
1195 }
1196 }
1197 enumerator->destroy(enumerator);
1198
1199 charon->bus->set_sa(charon->bus, ike_sa);
1200 return ike_sa;
1201 }
1202
1203 METHOD(ike_sa_manager_t, checkout_by_name, ike_sa_t*,
1204 private_ike_sa_manager_t *this, char *name, bool child)
1205 {
1206 enumerator_t *enumerator, *children;
1207 entry_t *entry;
1208 ike_sa_t *ike_sa = NULL;
1209 child_sa_t *child_sa;
1210 u_int segment;
1211
1212 enumerator = create_table_enumerator(this);
1213 while (enumerator->enumerate(enumerator, &entry, &segment))
1214 {
1215 if (wait_for_entry(this, entry, segment))
1216 {
1217 /* look for a child with such a policy name ... */
1218 if (child)
1219 {
1220 children = entry->ike_sa->create_child_sa_enumerator(entry->ike_sa);
1221 while (children->enumerate(children, (void**)&child_sa))
1222 {
1223 if (streq(child_sa->get_name(child_sa), name))
1224 {
1225 ike_sa = entry->ike_sa;
1226 break;
1227 }
1228 }
1229 children->destroy(children);
1230 }
1231 else /* ... or for a IKE_SA with such a connection name */
1232 {
1233 if (streq(entry->ike_sa->get_name(entry->ike_sa), name))
1234 {
1235 ike_sa = entry->ike_sa;
1236 }
1237 }
1238 /* got one, return */
1239 if (ike_sa)
1240 {
1241 entry->checked_out = TRUE;
1242 DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
1243 ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
1244 break;
1245 }
1246 }
1247 }
1248 enumerator->destroy(enumerator);
1249
1250 charon->bus->set_sa(charon->bus, ike_sa);
1251 return ike_sa;
1252 }
1253
1254 /**
1255 * enumerator filter function, waiting variant
1256 */
1257 static bool enumerator_filter_wait(private_ike_sa_manager_t *this,
1258 entry_t **in, ike_sa_t **out, u_int *segment)
1259 {
1260 if (wait_for_entry(this, *in, *segment))
1261 {
1262 *out = (*in)->ike_sa;
1263 return TRUE;
1264 }
1265 return FALSE;
1266 }
1267
1268 /**
1269 * enumerator filter function, skipping variant
1270 */
1271 static bool enumerator_filter_skip(private_ike_sa_manager_t *this,
1272 entry_t **in, ike_sa_t **out, u_int *segment)
1273 {
1274 if (!(*in)->driveout_new_threads &&
1275 !(*in)->driveout_waiting_threads &&
1276 !(*in)->checked_out)
1277 {
1278 *out = (*in)->ike_sa;
1279 return TRUE;
1280 }
1281 return FALSE;
1282 }
1283
1284 METHOD(ike_sa_manager_t, create_enumerator, enumerator_t*,
1285 private_ike_sa_manager_t* this, bool wait)
1286 {
1287 return enumerator_create_filter(create_table_enumerator(this),
1288 wait ? (void*)enumerator_filter_wait : (void*)enumerator_filter_skip,
1289 this, NULL);
1290 }
1291
1292 METHOD(ike_sa_manager_t, checkin, void,
1293 private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
1294 {
1295 /* to check the SA back in, we look for the pointer of the ike_sa
1296 * in all entries.
1297 * The lookup is done by initiator SPI, so even if the SPI has changed (e.g.
1298 * on reception of a IKE_SA_INIT response) the lookup will work but
1299 * updating of the SPI MAY be necessary...
1300 */
1301 entry_t *entry;
1302 ike_sa_id_t *ike_sa_id;
1303 host_t *other;
1304 identification_t *my_id, *other_id;
1305 u_int segment;
1306
1307 ike_sa_id = ike_sa->get_id(ike_sa);
1308 my_id = ike_sa->get_my_id(ike_sa);
1309 other_id = ike_sa->get_other_id(ike_sa);
1310 other = ike_sa->get_other_host(ike_sa);
1311
1312 DBG2(DBG_MGR, "checkin IKE_SA %s[%u]", ike_sa->get_name(ike_sa),
1313 ike_sa->get_unique_id(ike_sa));
1314
1315 /* look for the entry */
1316 if (get_entry_by_sa(this, ike_sa_id, ike_sa, &entry, &segment) == SUCCESS)
1317 {
1318 /* ike_sa_id must be updated */
1319 entry->ike_sa_id->replace_values(entry->ike_sa_id, ike_sa->get_id(ike_sa));
1320 /* signal waiting threads */
1321 entry->checked_out = FALSE;
1322 entry->message_id = -1;
1323 /* check if this SA is half-open */
1324 if (entry->half_open && ike_sa->get_state(ike_sa) != IKE_CONNECTING)
1325 {
1326 /* not half open anymore */
1327 entry->half_open = FALSE;
1328 remove_half_open(this, entry);
1329 }
1330 else if (entry->half_open && !other->ip_equals(other, entry->other))
1331 {
1332 /* the other host's IP has changed, we must update the hash table */
1333 remove_half_open(this, entry);
1334 DESTROY_IF(entry->other);
1335 entry->other = other->clone(other);
1336 put_half_open(this, entry);
1337 }
1338 else if (!entry->half_open &&
1339 !entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
1340 ike_sa->get_state(ike_sa) == IKE_CONNECTING)
1341 {
1342 /* this is a new half-open SA */
1343 entry->half_open = TRUE;
1344 entry->other = other->clone(other);
1345 put_half_open(this, entry);
1346 }
1347 DBG2(DBG_MGR, "check-in of IKE_SA successful.");
1348 entry->condvar->signal(entry->condvar);
1349 }
1350 else
1351 {
1352 entry = entry_create();
1353 entry->ike_sa_id = ike_sa_id->clone(ike_sa_id);
1354 entry->ike_sa = ike_sa;
1355 segment = put_entry(this, entry);
1356 }
1357
1358 /* apply identities for duplicate test */
1359 if (ike_sa->get_state(ike_sa) == IKE_ESTABLISHED &&
1360 entry->my_id == NULL && entry->other_id == NULL)
1361 {
1362 entry->my_id = my_id->clone(my_id);
1363 entry->other_id = other_id->clone(other_id);
1364 if (!entry->other)
1365 {
1366 entry->other = other->clone(other);
1367 }
1368 put_connected_peers(this, entry);
1369 }
1370
1371 unlock_single_segment(this, segment);
1372
1373 charon->bus->set_sa(charon->bus, NULL);
1374 }
1375
1376 METHOD(ike_sa_manager_t, checkin_and_destroy, void,
1377 private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
1378 {
1379 /* deletion is a bit complex, we must ensure that no thread is waiting for
1380 * this SA.
1381 * We take this SA from the table, and start signaling while threads
1382 * are in the condvar.
1383 */
1384 entry_t *entry;
1385 ike_sa_id_t *ike_sa_id;
1386 u_int segment;
1387
1388 ike_sa_id = ike_sa->get_id(ike_sa);
1389
1390 DBG2(DBG_MGR, "checkin and destroy IKE_SA %s[%u]", ike_sa->get_name(ike_sa),
1391 ike_sa->get_unique_id(ike_sa));
1392
1393 if (get_entry_by_sa(this, ike_sa_id, ike_sa, &entry, &segment) == SUCCESS)
1394 {
1395 /* drive out waiting threads, as we are in hurry */
1396 entry->driveout_waiting_threads = TRUE;
1397 /* mark it, so no new threads can get this entry */
1398 entry->driveout_new_threads = TRUE;
1399 /* wait until all workers have done their work */
1400 while (entry->waiting_threads)
1401 {
1402 /* wake up all */
1403 entry->condvar->broadcast(entry->condvar);
1404 /* they will wake us again when their work is done */
1405 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
1406 }
1407 remove_entry(this, entry);
1408 unlock_single_segment(this, segment);
1409
1410 if (entry->half_open)
1411 {
1412 remove_half_open(this, entry);
1413 }
1414 if (entry->my_id && entry->other_id)
1415 {
1416 remove_connected_peers(this, entry);
1417 }
1418
1419 entry_destroy(entry);
1420
1421 DBG2(DBG_MGR, "check-in and destroy of IKE_SA successful");
1422 }
1423 else
1424 {
1425 DBG1(DBG_MGR, "tried to check-in and delete nonexisting IKE_SA");
1426 ike_sa->destroy(ike_sa);
1427 }
1428 charon->bus->set_sa(charon->bus, NULL);
1429 }
1430
1431 METHOD(ike_sa_manager_t, check_uniqueness, bool,
1432 private_ike_sa_manager_t *this, ike_sa_t *ike_sa, bool force_replace)
1433 {
1434 bool cancel = FALSE;
1435 peer_cfg_t *peer_cfg;
1436 unique_policy_t policy;
1437 linked_list_t *list, *duplicate_ids = NULL;
1438 enumerator_t *enumerator;
1439 ike_sa_id_t *duplicate_id = NULL;
1440 identification_t *me, *other;
1441 u_int row, segment;
1442 rwlock_t *lock;
1443
1444 peer_cfg = ike_sa->get_peer_cfg(ike_sa);
1445 policy = peer_cfg->get_unique_policy(peer_cfg);
1446 if (policy == UNIQUE_NO && !force_replace)
1447 {
1448 return FALSE;
1449 }
1450
1451 me = ike_sa->get_my_id(ike_sa);
1452 other = ike_sa->get_other_id(ike_sa);
1453
1454 row = chunk_hash_inc(other->get_encoding(other),
1455 chunk_hash(me->get_encoding(me))) & this->table_mask;
1456 segment = row & this->segment_mask;
1457
1458 lock = this->connected_peers_segments[segment & this->segment_mask].lock;
1459 lock->read_lock(lock);
1460 list = this->connected_peers_table[row];
1461 if (list)
1462 {
1463 connected_peers_t *current;
1464 host_t *other_host;
1465
1466 other_host = ike_sa->get_other_host(ike_sa);
1467 if (list->find_first(list, (linked_list_match_t)connected_peers_match,
1468 (void**)&current, me, other,
1469 (uintptr_t)other_host->get_family(other_host)) == SUCCESS)
1470 {
1471 /* clone the list, so we can release the lock */
1472 duplicate_ids = current->sas->clone_offset(current->sas,
1473 offsetof(ike_sa_id_t, clone));
1474 }
1475 }
1476 lock->unlock(lock);
1477
1478 if (!duplicate_ids)
1479 {
1480 return FALSE;
1481 }
1482
1483 enumerator = duplicate_ids->create_enumerator(duplicate_ids);
1484 while (enumerator->enumerate(enumerator, &duplicate_id))
1485 {
1486 status_t status = SUCCESS;
1487 ike_sa_t *duplicate;
1488
1489 duplicate = checkout(this, duplicate_id);
1490 if (!duplicate)
1491 {
1492 continue;
1493 }
1494 if (force_replace)
1495 {
1496 DBG1(DBG_IKE, "destroying duplicate IKE_SA for peer '%Y', "
1497 "received INITIAL_CONTACT", other);
1498 checkin_and_destroy(this, duplicate);
1499 continue;
1500 }
1501 peer_cfg = duplicate->get_peer_cfg(duplicate);
1502 if (peer_cfg && peer_cfg->equals(peer_cfg, ike_sa->get_peer_cfg(ike_sa)))
1503 {
1504 switch (duplicate->get_state(duplicate))
1505 {
1506 case IKE_ESTABLISHED:
1507 case IKE_REKEYING:
1508 switch (policy)
1509 {
1510 case UNIQUE_REPLACE:
1511 DBG1(DBG_IKE, "deleting duplicate IKE_SA for peer "
1512 "'%Y' due to uniqueness policy", other);
1513 status = duplicate->delete(duplicate);
1514 break;
1515 case UNIQUE_KEEP:
1516 cancel = TRUE;
1517 /* we keep the first IKE_SA and delete all
1518 * other duplicates that might exist */
1519 policy = UNIQUE_REPLACE;
1520 break;
1521 default:
1522 break;
1523 }
1524 break;
1525 default:
1526 break;
1527 }
1528 }
1529 if (status == DESTROY_ME)
1530 {
1531 checkin_and_destroy(this, duplicate);
1532 }
1533 else
1534 {
1535 checkin(this, duplicate);
1536 }
1537 }
1538 enumerator->destroy(enumerator);
1539 duplicate_ids->destroy_offset(duplicate_ids, offsetof(ike_sa_id_t, destroy));
1540 /* reset thread's current IKE_SA after checkin */
1541 charon->bus->set_sa(charon->bus, ike_sa);
1542 return cancel;
1543 }
1544
1545 METHOD(ike_sa_manager_t, has_contact, bool,
1546 private_ike_sa_manager_t *this, identification_t *me,
1547 identification_t *other, int family)
1548 {
1549 linked_list_t *list;
1550 u_int row, segment;
1551 rwlock_t *lock;
1552 bool found = FALSE;
1553
1554 row = chunk_hash_inc(other->get_encoding(other),
1555 chunk_hash(me->get_encoding(me))) & this->table_mask;
1556 segment = row & this->segment_mask;
1557 lock = this->connected_peers_segments[segment & this->segment_mask].lock;
1558 lock->read_lock(lock);
1559 list = this->connected_peers_table[row];
1560 if (list)
1561 {
1562 if (list->find_first(list, (linked_list_match_t)connected_peers_match,
1563 NULL, me, other, family) == SUCCESS)
1564 {
1565 found = TRUE;
1566 }
1567 }
1568 lock->unlock(lock);
1569
1570 return found;
1571 }
1572
1573 METHOD(ike_sa_manager_t, get_count, u_int,
1574 private_ike_sa_manager_t *this)
1575 {
1576 u_int segment, count = 0;
1577 mutex_t *mutex;
1578
1579 for (segment = 0; segment < this->segment_count; segment++)
1580 {
1581 mutex = this->segments[segment & this->segment_mask].mutex;
1582 mutex->lock(mutex);
1583 count += this->segments[segment].count;
1584 mutex->unlock(mutex);
1585 }
1586 return count;
1587 }
1588
1589 METHOD(ike_sa_manager_t, get_half_open_count, u_int,
1590 private_ike_sa_manager_t *this, host_t *ip)
1591 {
1592 linked_list_t *list;
1593 u_int segment, row;
1594 rwlock_t *lock;
1595 chunk_t addr;
1596 u_int count = 0;
1597
1598 if (ip)
1599 {
1600 addr = ip->get_address(ip);
1601 row = chunk_hash(addr) & this->table_mask;
1602 segment = row & this->segment_mask;
1603 lock = this->half_open_segments[segment & this->segment_mask].lock;
1604 lock->read_lock(lock);
1605 if ((list = this->half_open_table[row]) != NULL)
1606 {
1607 half_open_t *current;
1608
1609 if (list->find_first(list, (linked_list_match_t)half_open_match,
1610 (void**)&current, &addr) == SUCCESS)
1611 {
1612 count = current->count;
1613 }
1614 }
1615 lock->unlock(lock);
1616 }
1617 else
1618 {
1619 for (segment = 0; segment < this->segment_count; segment++)
1620 {
1621 lock = this->half_open_segments[segment & this->segment_mask].lock;
1622 lock->read_lock(lock);
1623 count += this->half_open_segments[segment].count;
1624 lock->unlock(lock);
1625 }
1626 }
1627 return count;
1628 }
1629
1630 METHOD(ike_sa_manager_t, flush, void,
1631 private_ike_sa_manager_t *this)
1632 {
1633 /* destroy all list entries */
1634 enumerator_t *enumerator;
1635 entry_t *entry;
1636 u_int segment;
1637
1638 lock_all_segments(this);
1639 DBG2(DBG_MGR, "going to destroy IKE_SA manager and all managed IKE_SA's");
1640 /* Step 1: drive out all waiting threads */
1641 DBG2(DBG_MGR, "set driveout flags for all stored IKE_SA's");
1642 enumerator = create_table_enumerator(this);
1643 while (enumerator->enumerate(enumerator, &entry, &segment))
1644 {
1645 /* do not accept new threads, drive out waiting threads */
1646 entry->driveout_new_threads = TRUE;
1647 entry->driveout_waiting_threads = TRUE;
1648 }
1649 enumerator->destroy(enumerator);
1650 DBG2(DBG_MGR, "wait for all threads to leave IKE_SA's");
1651 /* Step 2: wait until all are gone */
1652 enumerator = create_table_enumerator(this);
1653 while (enumerator->enumerate(enumerator, &entry, &segment))
1654 {
1655 while (entry->waiting_threads || entry->checked_out)
1656 {
1657 /* wake up all */
1658 entry->condvar->broadcast(entry->condvar);
1659 /* go sleeping until they are gone */
1660 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
1661 }
1662 }
1663 enumerator->destroy(enumerator);
1664 DBG2(DBG_MGR, "delete all IKE_SA's");
1665 /* Step 3: initiate deletion of all IKE_SAs */
1666 enumerator = create_table_enumerator(this);
1667 while (enumerator->enumerate(enumerator, &entry, &segment))
1668 {
1669 charon->bus->set_sa(charon->bus, entry->ike_sa);
1670 /* as the delete never gets processed, fire down events */
1671 switch (entry->ike_sa->get_state(entry->ike_sa))
1672 {
1673 case IKE_ESTABLISHED:
1674 case IKE_REKEYING:
1675 case IKE_DELETING:
1676 charon->bus->ike_updown(charon->bus, entry->ike_sa, FALSE);
1677 break;
1678 default:
1679 break;
1680 }
1681 entry->ike_sa->delete(entry->ike_sa);
1682 }
1683 enumerator->destroy(enumerator);
1684
1685 DBG2(DBG_MGR, "destroy all entries");
1686 /* Step 4: destroy all entries */
1687 enumerator = create_table_enumerator(this);
1688 while (enumerator->enumerate(enumerator, &entry, &segment))
1689 {
1690 charon->bus->set_sa(charon->bus, entry->ike_sa);
1691 if (entry->half_open)
1692 {
1693 remove_half_open(this, entry);
1694 }
1695 if (entry->my_id && entry->other_id)
1696 {
1697 remove_connected_peers(this, entry);
1698 }
1699 remove_entry_at((private_enumerator_t*)enumerator);
1700 entry_destroy(entry);
1701 }
1702 enumerator->destroy(enumerator);
1703 charon->bus->set_sa(charon->bus, NULL);
1704 unlock_all_segments(this);
1705
1706 this->rng->destroy(this->rng);
1707 this->rng = NULL;
1708 this->hasher->destroy(this->hasher);
1709 this->hasher = NULL;
1710 }
1711
1712 METHOD(ike_sa_manager_t, destroy, void,
1713 private_ike_sa_manager_t *this)
1714 {
1715 u_int i;
1716
1717 for (i = 0; i < this->table_size; i++)
1718 {
1719 DESTROY_IF(this->ike_sa_table[i]);
1720 DESTROY_IF(this->half_open_table[i]);
1721 DESTROY_IF(this->connected_peers_table[i]);
1722 }
1723 free(this->ike_sa_table);
1724 free(this->half_open_table);
1725 free(this->connected_peers_table);
1726 for (i = 0; i < this->segment_count; i++)
1727 {
1728 this->segments[i].mutex->destroy(this->segments[i].mutex);
1729 this->half_open_segments[i].lock->destroy(this->half_open_segments[i].lock);
1730 this->connected_peers_segments[i].lock->destroy(this->connected_peers_segments[i].lock);
1731 }
1732 free(this->segments);
1733 free(this->half_open_segments);
1734 free(this->connected_peers_segments);
1735
1736 free(this);
1737 }
1738
1739 /**
1740 * This function returns the next-highest power of two for the given number.
1741 * The algorithm works by setting all bits on the right-hand side of the most
1742 * significant 1 to 1 and then increments the whole number so it rolls over
1743 * to the nearest power of two. Note: returns 0 for n == 0
1744 */
1745 static u_int get_nearest_powerof2(u_int n)
1746 {
1747 u_int i;
1748
1749 --n;
1750 for (i = 1; i < sizeof(u_int) * 8; i <<= 1)
1751 {
1752 n |= n >> i;
1753 }
1754 return ++n;
1755 }
1756
1757 /*
1758 * Described in header.
1759 */
1760 ike_sa_manager_t *ike_sa_manager_create()
1761 {
1762 private_ike_sa_manager_t *this;
1763 u_int i;
1764
1765 INIT(this,
1766 .public = {
1767 .checkout = _checkout,
1768 .checkout_new = _checkout_new,
1769 .checkout_by_message = _checkout_by_message,
1770 .checkout_by_config = _checkout_by_config,
1771 .checkout_by_id = _checkout_by_id,
1772 .checkout_by_name = _checkout_by_name,
1773 .check_uniqueness = _check_uniqueness,
1774 .has_contact = _has_contact,
1775 .create_enumerator = _create_enumerator,
1776 .checkin = _checkin,
1777 .checkin_and_destroy = _checkin_and_destroy,
1778 .get_count = _get_count,
1779 .get_half_open_count = _get_half_open_count,
1780 .flush = _flush,
1781 .destroy = _destroy,
1782 },
1783 );
1784
1785 this->hasher = lib->crypto->create_hasher(lib->crypto, HASH_PREFERRED);
1786 if (this->hasher == NULL)
1787 {
1788 DBG1(DBG_MGR, "manager initialization failed, no hasher supported");
1789 free(this);
1790 return NULL;
1791 }
1792 this->rng = lib->crypto->create_rng(lib->crypto, RNG_WEAK);
1793 if (this->rng == NULL)
1794 {
1795 DBG1(DBG_MGR, "manager initialization failed, no RNG supported");
1796 this->hasher->destroy(this->hasher);
1797 free(this);
1798 return NULL;
1799 }
1800
1801 this->table_size = get_nearest_powerof2(lib->settings->get_int(lib->settings,
1802 "charon.ikesa_table_size", DEFAULT_HASHTABLE_SIZE));
1803 this->table_size = max(1, min(this->table_size, MAX_HASHTABLE_SIZE));
1804 this->table_mask = this->table_size - 1;
1805
1806 this->segment_count = get_nearest_powerof2(lib->settings->get_int(lib->settings,
1807 "charon.ikesa_table_segments", DEFAULT_SEGMENT_COUNT));
1808 this->segment_count = max(1, min(this->segment_count, this->table_size));
1809 this->segment_mask = this->segment_count - 1;
1810 this->ike_sa_table = calloc(this->table_size, sizeof(linked_list_t*));
1811
1812 this->segments = (segment_t*)calloc(this->segment_count, sizeof(segment_t));
1813 for (i = 0; i < this->segment_count; i++)
1814 {
1815 this->segments[i].mutex = mutex_create(MUTEX_TYPE_RECURSIVE);
1816 this->segments[i].count = 0;
1817 }
1818
1819 /* we use the same table parameters for the table to track half-open SAs */
1820 this->half_open_table = calloc(this->table_size, sizeof(linked_list_t*));
1821 this->half_open_segments = calloc(this->segment_count, sizeof(shareable_segment_t));
1822 for (i = 0; i < this->segment_count; i++)
1823 {
1824 this->half_open_segments[i].lock = rwlock_create(RWLOCK_TYPE_DEFAULT);
1825 this->half_open_segments[i].count = 0;
1826 }
1827
1828 /* also for the hash table used for duplicate tests */
1829 this->connected_peers_table = calloc(this->table_size, sizeof(linked_list_t*));
1830 this->connected_peers_segments = calloc(this->segment_count, sizeof(shareable_segment_t));
1831 for (i = 0; i < this->segment_count; i++)
1832 {
1833 this->connected_peers_segments[i].lock = rwlock_create(RWLOCK_TYPE_DEFAULT);
1834 this->connected_peers_segments[i].count = 0;
1835 }
1836
1837 this->reuse_ikesa = lib->settings->get_bool(lib->settings,
1838 "charon.reuse_ikesa", TRUE);
1839 return &this->public;
1840 }