fixing IKE_SA rekeying if charon.ikesa_table_size > 1
[strongswan.git] / src / charon / sa / ike_sa_manager.c
1 /*
2 * Copyright (C) 2008 Tobias Brunner
3 * Copyright (C) 2005-2008 Martin Willi
4 * Copyright (C) 2005 Jan Hutter
5 * Hochschule fuer Technik Rapperswil
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2 of the License, or (at your
10 * option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 * for more details.
16 *
17 * $Id$
18 */
19
20 #include <string.h>
21
22 #include "ike_sa_manager.h"
23
24 #include <daemon.h>
25 #include <sa/ike_sa_id.h>
26 #include <bus/bus.h>
27 #include <utils/mutex.h>
28 #include <utils/linked_list.h>
29 #include <crypto/hashers/hasher.h>
30
31 /* the default size of the hash table (MUST be a power of 2) */
32 #define DEFAULT_HASHTABLE_SIZE 1
33
34 /* the maximum size of the hash table (MUST be a power of 2) */
35 #define MAX_HASHTABLE_SIZE (1 << 30)
36
37 /* the default number of segments (MUST be a power of 2) */
38 #define DEFAULT_SEGMENT_COUNT 1
39
40 typedef struct entry_t entry_t;
41
42 /**
43 * An entry in the linked list, contains IKE_SA, locking and lookup data.
44 */
45 struct entry_t {
46
47 /**
48 * Number of threads waiting for this ike_sa_t object.
49 */
50 int waiting_threads;
51
52 /**
53 * Condvar where threads can wait until ike_sa_t object is free for use again.
54 */
55 condvar_t *condvar;
56
57 /**
58 * Is this ike_sa currently checked out?
59 */
60 bool checked_out;
61
62 /**
63 * Does this SA drives out new threads?
64 */
65 bool driveout_new_threads;
66
67 /**
68 * Does this SA drives out waiting threads?
69 */
70 bool driveout_waiting_threads;
71
72 /**
73 * Identification of an IKE_SA (SPIs).
74 */
75 ike_sa_id_t *ike_sa_id;
76
77 /**
78 * The contained ike_sa_t object.
79 */
80 ike_sa_t *ike_sa;
81
82 /**
83 * hash of the IKE_SA_INIT message, used to detect retransmissions
84 */
85 chunk_t init_hash;
86
87 /**
88 * remote host address, required for DoS detection
89 */
90 host_t *other;
91
92 /**
93 * As responder: Is this SA half-open?
94 */
95 bool half_open;
96
97 /**
98 * own identity, required for duplicate checking
99 */
100 identification_t *my_id;
101
102 /**
103 * remote identity, required for duplicate checking
104 */
105 identification_t *other_id;
106
107 /**
108 * message ID currently processing, if any
109 */
110 u_int32_t message_id;
111 };
112
113 /**
114 * Implementation of entry_t.destroy.
115 */
116 static status_t entry_destroy(entry_t *this)
117 {
118 /* also destroy IKE SA */
119 this->ike_sa->destroy(this->ike_sa);
120 this->ike_sa_id->destroy(this->ike_sa_id);
121 chunk_free(&this->init_hash);
122 DESTROY_IF(this->other);
123 DESTROY_IF(this->my_id);
124 DESTROY_IF(this->other_id);
125 this->condvar->destroy(this->condvar);
126 free(this);
127 return SUCCESS;
128 }
129
130 /**
131 * Creates a new entry for the ike_sa_t list.
132 */
133 static entry_t *entry_create()
134 {
135 entry_t *this = malloc_thing(entry_t);
136
137 this->waiting_threads = 0;
138 this->condvar = condvar_create(CONDVAR_DEFAULT);
139
140 /* we set checkout flag when we really give it out */
141 this->checked_out = FALSE;
142 this->driveout_new_threads = FALSE;
143 this->driveout_waiting_threads = FALSE;
144 this->message_id = -1;
145 this->init_hash = chunk_empty;
146 this->other = NULL;
147 this->half_open = FALSE;
148 this->my_id = NULL;
149 this->other_id = NULL;
150 this->ike_sa_id = NULL;
151 this->ike_sa = NULL;
152
153 return this;
154 }
155
156 /**
157 * Function that matches entry_t objects by initiator SPI and the hash of the
158 * IKE_SA_INIT message.
159 */
160 static bool entry_match_by_hash(entry_t *entry, ike_sa_id_t *id, chunk_t *hash)
161 {
162 return id->get_responder_spi(id) == 0 &&
163 id->is_initiator(id) == entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
164 id->get_initiator_spi(id) == entry->ike_sa_id->get_initiator_spi(entry->ike_sa_id) &&
165 chunk_equals(*hash, entry->init_hash);
166 }
167
168 /**
169 * Function that matches entry_t objects by ike_sa_id_t.
170 */
171 static bool entry_match_by_id(entry_t *entry, ike_sa_id_t *id)
172 {
173 if (id->equals(id, entry->ike_sa_id))
174 {
175 return TRUE;
176 }
177 if ((id->get_responder_spi(id) == 0 ||
178 entry->ike_sa_id->get_responder_spi(entry->ike_sa_id) == 0) &&
179 id->is_initiator(id) == entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
180 id->get_initiator_spi(id) == entry->ike_sa_id->get_initiator_spi(entry->ike_sa_id))
181 {
182 /* this is TRUE for IKE_SAs that we initiated but have not yet received a response */
183 return TRUE;
184 }
185 return FALSE;
186 }
187
188 /**
189 * Function that matches entry_t objects by ike_sa_t pointers.
190 */
191 static bool entry_match_by_sa(entry_t *entry, ike_sa_t *ike_sa)
192 {
193 return entry->ike_sa == ike_sa;
194 }
195
196 /**
197 * Hash function for ike_sa_id_t objects.
198 */
199 static u_int ike_sa_id_hash(ike_sa_id_t *ike_sa_id)
200 {
201 /* we always use initiator spi as key */
202 return ike_sa_id->get_initiator_spi(ike_sa_id);
203 }
204
205 typedef struct half_open_t half_open_t;
206
207 /**
208 * Struct to manage half-open IKE_SAs per peer.
209 */
210 struct half_open_t {
211 /** chunk of remote host address */
212 chunk_t other;
213
214 /** the number of half-open IKE_SAs with that host */
215 u_int count;
216 };
217
218 /**
219 * Destroys a half_open_t object.
220 */
221 static void half_open_destroy(half_open_t *this)
222 {
223 chunk_free(&this->other);
224 free(this);
225 }
226
227 /**
228 * Function that matches half_open_t objects by the given IP address chunk.
229 */
230 static bool half_open_match(half_open_t *half_open, chunk_t *addr)
231 {
232 return chunk_equals(*addr, half_open->other);
233 }
234
235 typedef struct connected_peers_t connected_peers_t;
236
237 struct connected_peers_t {
238 /** own identity */
239 identification_t *my_id;
240
241 /** remote identity */
242 identification_t *other_id;
243
244 /** list of ike_sa_id_t objects of IKE_SAs between the two identities */
245 linked_list_t *sas;
246 };
247
248 static void connected_peers_destroy(connected_peers_t *this)
249 {
250 this->my_id->destroy(this->my_id);
251 this->other_id->destroy(this->other_id);
252 this->sas->destroy(this->sas);
253 free(this);
254 }
255
256 /**
257 * Function that matches connected_peers_t objects by the given ids.
258 */
259 static bool connected_peers_match(connected_peers_t *connected_peers,
260 identification_t *my_id, identification_t *other_id)
261 {
262 return my_id->equals(my_id, connected_peers->my_id) &&
263 other_id->equals(other_id, connected_peers->other_id);
264 }
265
266 typedef struct segment_t segment_t;
267
268 /**
269 * Struct to manage segments of the hash table.
270 */
271 struct segment_t {
272 /** mutex to access a segment exclusively */
273 mutex_t *mutex;
274
275 /** the number of entries in this segment */
276 u_int count;
277 };
278
279 typedef struct shareable_segment_t shareable_segment_t;
280
281 /**
282 * Struct to manage segments of the "half-open" and "connected peers" hash tables.
283 */
284 struct shareable_segment_t {
285 /** rwlock to access a segment non-/exclusively */
286 rwlock_t *lock;
287
288 /** the number of entries in this segment - in case of the "half-open table"
289 * it's the sum of all half_open_t.count in a segment. */
290 u_int count;
291 };
292
293 typedef struct private_ike_sa_manager_t private_ike_sa_manager_t;
294
295 /**
296 * Additional private members of ike_sa_manager_t.
297 */
298 struct private_ike_sa_manager_t {
299 /**
300 * Public interface of ike_sa_manager_t.
301 */
302 ike_sa_manager_t public;
303
304 /**
305 * Hash table with entries for the ike_sa_t objects.
306 */
307 linked_list_t **ike_sa_table;
308
309 /**
310 * The size of the hash table.
311 */
312 u_int table_size;
313
314 /**
315 * Mask to map the hashes to table rows.
316 */
317 u_int table_mask;
318
319 /**
320 * Segments of the hash table.
321 */
322 segment_t *segments;
323
324 /**
325 * The number of segments.
326 */
327 u_int segment_count;
328
329 /**
330 * Mask to map a table row to a segment.
331 */
332 u_int segment_mask;
333
334 /**
335 * Hash table with half_open_t objects.
336 */
337 linked_list_t **half_open_table;
338
339 /**
340 * Segments of the "half-open" hash table.
341 */
342 shareable_segment_t *half_open_segments;
343
344 /**
345 * Hash table with connected_peers_t objects.
346 */
347 linked_list_t **connected_peers_table;
348
349 /**
350 * Segments of the "connected peers" hash table.
351 */
352 shareable_segment_t *connected_peers_segments;
353
354 /**
355 * RNG to get random SPIs for our side
356 */
357 rng_t *rng;
358
359 /**
360 * SHA1 hasher for IKE_SA_INIT retransmit detection
361 */
362 hasher_t *hasher;
363
364 /**
365 * reuse existing IKE_SAs in checkout_by_config
366 */
367 bool reuse_ikesa;
368 };
369
370 /**
371 * Acquire a lock to access the segment of the table row with the given index.
372 * It also works with the segment index directly.
373 */
374 static void lock_single_segment(private_ike_sa_manager_t *this, u_int index)
375 {
376 mutex_t *lock = this->segments[index & this->segment_mask].mutex;
377
378 lock->lock(lock);
379 }
380
381 /**
382 * Release the lock required to access the segment of the table row with the given index.
383 * It also works with the segment index directly.
384 */
385 static void unlock_single_segment(private_ike_sa_manager_t *this, u_int index)
386 {
387 mutex_t *lock = this->segments[index & this->segment_mask].mutex;
388
389 lock->unlock(lock);
390 }
391
392 /**
393 * Lock all segments
394 */
395 static void lock_all_segments(private_ike_sa_manager_t *this)
396 {
397 u_int i;
398
399 for (i = 0; i < this->segment_count; ++i)
400 {
401 this->segments[i].mutex->lock(this->segments[i].mutex);
402 }
403 }
404
405 /**
406 * Unlock all segments
407 */
408 static void unlock_all_segments(private_ike_sa_manager_t *this)
409 {
410 u_int i;
411
412 for (i = 0; i < this->segment_count; ++i)
413 {
414 this->segments[i].mutex->unlock(this->segments[i].mutex);
415 }
416 }
417
418 typedef struct private_enumerator_t private_enumerator_t;
419
420 /**
421 * hash table enumerator implementation
422 */
423 struct private_enumerator_t {
424
425 /**
426 * implements enumerator interface
427 */
428 enumerator_t enumerator;
429
430 /**
431 * associated ike_sa_manager_t
432 */
433 private_ike_sa_manager_t *manager;
434
435 /**
436 * current segment index
437 */
438 u_int segment;
439
440 /**
441 * currently enumerating entry
442 */
443 entry_t *entry;
444
445 /**
446 * current table row index
447 */
448 u_int row;
449
450 /**
451 * enumerator for the current table row
452 */
453 enumerator_t *current;
454 };
455
456 /**
457 * Implementation of private_enumerator_t.enumerator.enumerate.
458 */
459 static bool enumerate(private_enumerator_t *this, entry_t **entry, u_int *segment)
460 {
461 if (this->entry)
462 {
463 this->entry->condvar->signal(this->entry->condvar);
464 this->entry = NULL;
465 }
466 while (this->segment < this->manager->segment_count)
467 {
468 while (this->row < this->manager->table_size)
469 {
470 if (this->current)
471 {
472 entry_t *item;
473
474 if (this->current->enumerate(this->current, &item))
475 {
476 *entry = this->entry = item;
477 *segment = this->segment;
478 return TRUE;
479 }
480 this->current->destroy(this->current);
481 this->current = NULL;
482 unlock_single_segment(this->manager, this->segment);
483 }
484 else
485 {
486 linked_list_t *list;
487
488 lock_single_segment(this->manager, this->segment);
489 if ((list = this->manager->ike_sa_table[this->row]) != NULL &&
490 list->get_count(list))
491 {
492 this->current = list->create_enumerator(list);
493 continue;
494 }
495 unlock_single_segment(this->manager, this->segment);
496 }
497 this->row += this->manager->segment_count;
498 }
499 this->segment++;
500 this->row = this->segment;
501 }
502 return FALSE;
503 }
504
505 /**
506 * Implementation of private_enumerator_t.enumerator.destroy.
507 */
508 static void enumerator_destroy(private_enumerator_t *this)
509 {
510 if (this->entry)
511 {
512 this->entry->condvar->signal(this->entry->condvar);
513 }
514 if (this->current)
515 {
516 this->current->destroy(this->current);
517 unlock_single_segment(this->manager, this->segment);
518 }
519 free(this);
520 }
521
522 /**
523 * Creates an enumerator to enumerate the entries in the hash table.
524 */
525 static enumerator_t* create_table_enumerator(private_ike_sa_manager_t *this)
526 {
527 private_enumerator_t *enumerator = malloc_thing(private_enumerator_t);
528
529 enumerator->enumerator.enumerate = (void*)enumerate;
530 enumerator->enumerator.destroy = (void*)enumerator_destroy;
531 enumerator->manager = this;
532 enumerator->segment = 0;
533 enumerator->entry = NULL;
534 enumerator->row = 0;
535 enumerator->current = NULL;
536
537 return &enumerator->enumerator;
538 }
539
540 /**
541 * Put an entry into the hash table.
542 * Note: The caller has to unlock the returned segment.
543 */
544 static u_int put_entry(private_ike_sa_manager_t *this, entry_t *entry)
545 {
546 linked_list_t *list;
547 u_int row = ike_sa_id_hash(entry->ike_sa_id) & this->table_mask;
548 u_int segment = row & this->segment_mask;
549
550 lock_single_segment(this, segment);
551 if ((list = this->ike_sa_table[row]) == NULL)
552 {
553 list = this->ike_sa_table[row] = linked_list_create();
554 }
555 list->insert_last(list, entry);
556 this->segments[segment].count++;
557 return segment;
558 }
559
560 /**
561 * Remove an entry from the hash table.
562 * Note: The caller MUST have a lock on the segment of this entry.
563 */
564 static void remove_entry(private_ike_sa_manager_t *this, entry_t *entry)
565 {
566 linked_list_t *list;
567 u_int row = ike_sa_id_hash(entry->ike_sa_id) & this->table_mask;
568 u_int segment = row & this->segment_mask;
569
570 if ((list = this->ike_sa_table[row]) != NULL)
571 {
572 entry_t *current;
573
574 enumerator_t *enumerator = list->create_enumerator(list);
575 while (enumerator->enumerate(enumerator, &current))
576 {
577 if (current == entry)
578 {
579 list->remove_at(list, enumerator);
580 this->segments[segment].count--;
581 break;
582 }
583 }
584 enumerator->destroy(enumerator);
585 }
586 }
587
588 /**
589 * Remove the entry at the current enumerator position.
590 */
591 static void remove_entry_at(private_enumerator_t *this)
592 {
593 this->entry = NULL;
594 if (this->current)
595 {
596 linked_list_t *list = this->manager->ike_sa_table[this->row];
597 list->remove_at(list, this->current);
598 this->manager->segments[this->segment].count--;
599 }
600 }
601
602 /**
603 * Find an entry using the provided match function to compare the entries for
604 * equality.
605 */
606 static status_t get_entry_by_match_function(private_ike_sa_manager_t *this,
607 ike_sa_id_t *ike_sa_id, entry_t **entry, u_int *segment,
608 linked_list_match_t match, void *p1, void *p2)
609 {
610 entry_t *current;
611 linked_list_t *list;
612 u_int row = ike_sa_id_hash(ike_sa_id) & this->table_mask;
613 u_int seg = row & this->segment_mask;
614
615 lock_single_segment(this, seg);
616 if ((list = this->ike_sa_table[row]) != NULL)
617 {
618 if (list->find_first(list, match, (void**)&current, p1, p2) == SUCCESS)
619 {
620 *entry = current;
621 *segment = seg;
622 /* the locked segment has to be unlocked by the caller */
623 return SUCCESS;
624 }
625 }
626 unlock_single_segment(this, seg);
627 return NOT_FOUND;
628 }
629
630 /**
631 * Find an entry by ike_sa_id_t.
632 * Note: On SUCCESS, the caller has to unlock the segment.
633 */
634 static status_t get_entry_by_id(private_ike_sa_manager_t *this,
635 ike_sa_id_t *ike_sa_id, entry_t **entry, u_int *segment)
636 {
637 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
638 (linked_list_match_t)entry_match_by_id, ike_sa_id, NULL);
639 }
640
641 /**
642 * Find an entry by initiator SPI and IKE_SA_INIT hash.
643 * Note: On SUCCESS, the caller has to unlock the segment.
644 */
645 static status_t get_entry_by_hash(private_ike_sa_manager_t *this,
646 ike_sa_id_t *ike_sa_id, chunk_t hash, entry_t **entry, u_int *segment)
647 {
648 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
649 (linked_list_match_t)entry_match_by_hash, ike_sa_id, &hash);
650 }
651
652 /**
653 * Find an entry by IKE_SA pointer.
654 * Note: On SUCCESS, the caller has to unlock the segment.
655 */
656 static status_t get_entry_by_sa(private_ike_sa_manager_t *this,
657 ike_sa_id_t *ike_sa_id, ike_sa_t *ike_sa, entry_t **entry, u_int *segment)
658 {
659 return get_entry_by_match_function(this, ike_sa_id, entry, segment,
660 (linked_list_match_t)entry_match_by_sa, ike_sa, NULL);
661 }
662
663 /**
664 * Wait until no other thread is using an IKE_SA, return FALSE if entry not
665 * acquirable.
666 */
667 static bool wait_for_entry(private_ike_sa_manager_t *this, entry_t *entry,
668 u_int segment)
669 {
670 if (entry->driveout_new_threads)
671 {
672 /* we are not allowed to get this */
673 return FALSE;
674 }
675 while (entry->checked_out && !entry->driveout_waiting_threads)
676 {
677 /* so wait until we can get it for us.
678 * we register us as waiting. */
679 entry->waiting_threads++;
680 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
681 entry->waiting_threads--;
682 }
683 /* hm, a deletion request forbids us to get this SA, get next one */
684 if (entry->driveout_waiting_threads)
685 {
686 /* we must signal here, others may be waiting on it, too */
687 entry->condvar->signal(entry->condvar);
688 return FALSE;
689 }
690 return TRUE;
691 }
692
693 /**
694 * Put a half-open SA into the hash table.
695 */
696 static void put_half_open(private_ike_sa_manager_t *this, entry_t *entry)
697 {
698 half_open_t *half_open = NULL;
699 linked_list_t *list;
700 chunk_t addr = entry->other->get_address(entry->other);
701 u_int row = chunk_hash(addr) & this->table_mask;
702 u_int segment = row & this->segment_mask;
703
704 rwlock_t *lock = this->half_open_segments[segment].lock;
705 lock->write_lock(lock);
706 if ((list = this->half_open_table[row]) == NULL)
707 {
708 list = this->half_open_table[row] = linked_list_create();
709 }
710 else
711 {
712 half_open_t *current;
713 if (list->find_first(list, (linked_list_match_t)half_open_match,
714 (void**)&current, &addr) == SUCCESS)
715 {
716 half_open = current;
717 half_open->count++;
718 this->half_open_segments[segment].count++;
719 }
720 }
721
722 if (!half_open)
723 {
724 half_open = malloc_thing(half_open_t);
725 half_open->other = chunk_clone(addr);
726 half_open->count = 1;
727 list->insert_last(list, half_open);
728 this->half_open_segments[segment].count++;
729 }
730 lock->unlock(lock);
731 }
732
733 /**
734 * Remove a half-open SA from the hash table.
735 */
736 static void remove_half_open(private_ike_sa_manager_t *this, entry_t *entry)
737 {
738 linked_list_t *list;
739 chunk_t addr = entry->other->get_address(entry->other);
740 u_int row = chunk_hash(addr) & this->table_mask;
741 u_int segment = row & this->segment_mask;
742
743 rwlock_t *lock = this->half_open_segments[segment].lock;
744 lock->write_lock(lock);
745 if ((list = this->half_open_table[row]) != NULL)
746 {
747 half_open_t *current;
748 enumerator_t *enumerator = list->create_enumerator(list);
749 while (enumerator->enumerate(enumerator, &current))
750 {
751 if (half_open_match(current, &addr))
752 {
753 if (--current->count == 0)
754 {
755 list->remove_at(list, enumerator);
756 half_open_destroy(current);
757 }
758 this->half_open_segments[segment].count--;
759 break;
760 }
761 }
762 enumerator->destroy(enumerator);
763 }
764 lock->unlock(lock);
765 }
766
767 /**
768 * Put an SA between two peers into the hash table.
769 */
770 static void put_connected_peers(private_ike_sa_manager_t *this, entry_t *entry)
771 {
772 linked_list_t *list;
773 connected_peers_t *connected_peers = NULL;
774 chunk_t my_id = entry->my_id->get_encoding(entry->my_id),
775 other_id = entry->other_id->get_encoding(entry->other_id);
776 u_int row = chunk_hash_inc(other_id, chunk_hash(my_id)) & this->table_mask;
777 u_int segment = row & this->segment_mask;
778
779 rwlock_t *lock = this->connected_peers_segments[segment].lock;
780 lock->write_lock(lock);
781 if ((list = this->connected_peers_table[row]) == NULL)
782 {
783 list = this->connected_peers_table[row] = linked_list_create();
784 }
785 else
786 {
787 connected_peers_t *current;
788 if (list->find_first(list, (linked_list_match_t)connected_peers_match,
789 (void**)&current, entry->my_id, entry->other_id) == SUCCESS)
790 {
791 connected_peers = current;
792 if (connected_peers->sas->find_first(connected_peers->sas,
793 (linked_list_match_t)entry->ike_sa_id->equals,
794 NULL, entry->ike_sa_id) == SUCCESS)
795 {
796 lock->unlock(lock);
797 return;
798 }
799 }
800 }
801
802 if (!connected_peers)
803 {
804 connected_peers = malloc_thing(connected_peers_t);
805 connected_peers->my_id = entry->my_id->clone(entry->my_id);
806 connected_peers->other_id = entry->other_id->clone(entry->other_id);
807 connected_peers->sas = linked_list_create();
808 list->insert_last(list, connected_peers);
809 }
810 connected_peers->sas->insert_last(connected_peers->sas,
811 entry->ike_sa_id->clone(entry->ike_sa_id));
812 this->connected_peers_segments[segment].count++;
813 lock->unlock(lock);
814 }
815
816 /**
817 * Remove an SA between two peers from the hash table.
818 */
819 static void remove_connected_peers(private_ike_sa_manager_t *this, entry_t *entry)
820 {
821 linked_list_t *list;
822 chunk_t my_id = entry->my_id->get_encoding(entry->my_id),
823 other_id = entry->other_id->get_encoding(entry->other_id);
824 u_int row = chunk_hash_inc(other_id, chunk_hash(my_id)) & this->table_mask;
825 u_int segment = row & this->segment_mask;
826
827 rwlock_t *lock = this->connected_peers_segments[segment].lock;
828 lock->write_lock(lock);
829 if ((list = this->connected_peers_table[row]) != NULL)
830 {
831 connected_peers_t *current;
832 enumerator_t *enumerator = list->create_enumerator(list);
833 while (enumerator->enumerate(enumerator, &current))
834 {
835 if (connected_peers_match(current, entry->my_id, entry->other_id))
836 {
837 ike_sa_id_t *ike_sa_id;
838 enumerator_t *inner = current->sas->create_enumerator(current->sas);
839 while (inner->enumerate(inner, &ike_sa_id))
840 {
841 if (ike_sa_id->equals(ike_sa_id, entry->ike_sa_id))
842 {
843 current->sas->remove_at(current->sas, inner);
844 ike_sa_id->destroy(ike_sa_id);
845 this->connected_peers_segments[segment].count--;
846 break;
847 }
848 }
849 inner->destroy(inner);
850 if (current->sas->get_count(current->sas) == 0)
851 {
852 list->remove_at(list, enumerator);
853 connected_peers_destroy(current);
854 }
855 break;
856 }
857 }
858 enumerator->destroy(enumerator);
859 }
860 lock->unlock(lock);
861 }
862
863 /**
864 * Implementation of private_ike_sa_manager_t.get_next_spi.
865 */
866 static u_int64_t get_next_spi(private_ike_sa_manager_t *this)
867 {
868 u_int64_t spi;
869
870 this->rng->get_bytes(this->rng, sizeof(spi), (u_int8_t*)&spi);
871 return spi;
872 }
873
874 /**
875 * Implementation of of ike_sa_manager.checkout.
876 */
877 static ike_sa_t* checkout(private_ike_sa_manager_t *this, ike_sa_id_t *ike_sa_id)
878 {
879 ike_sa_t *ike_sa = NULL;
880 entry_t *entry;
881 u_int segment;
882
883 DBG2(DBG_MGR, "checkout IKE_SA");
884
885 if (get_entry_by_id(this, ike_sa_id, &entry, &segment) == SUCCESS)
886 {
887 if (wait_for_entry(this, entry, segment))
888 {
889 DBG2(DBG_MGR, "IKE_SA successfully checked out");
890 entry->checked_out = TRUE;
891 ike_sa = entry->ike_sa;
892 }
893 unlock_single_segment(this, segment);
894 }
895 charon->bus->set_sa(charon->bus, ike_sa);
896 return ike_sa;
897 }
898
899 /**
900 * Implementation of of ike_sa_manager.checkout_new.
901 */
902 static ike_sa_t *checkout_new(private_ike_sa_manager_t* this, bool initiator)
903 {
904 ike_sa_id_t *ike_sa_id;
905 ike_sa_t *ike_sa;
906 entry_t *entry;
907 u_int segment;
908
909 if (initiator)
910 {
911 ike_sa_id = ike_sa_id_create(get_next_spi(this), 0, TRUE);
912 }
913 else
914 {
915 ike_sa_id = ike_sa_id_create(0, get_next_spi(this), FALSE);
916 }
917 ike_sa = ike_sa_create(ike_sa_id);
918
919 DBG2(DBG_MGR, "created IKE_SA");
920
921 if (!initiator)
922 {
923 ike_sa_id->destroy(ike_sa_id);
924 return ike_sa;
925 }
926
927 entry = entry_create();
928 entry->ike_sa_id = ike_sa_id;
929 entry->ike_sa = ike_sa;
930 segment = put_entry(this, entry);
931 entry->checked_out = TRUE;
932 unlock_single_segment(this, segment);
933 return entry->ike_sa;
934 }
935
936 /**
937 * Implementation of of ike_sa_manager.checkout_by_message.
938 */
939 static ike_sa_t* checkout_by_message(private_ike_sa_manager_t* this,
940 message_t *message)
941 {
942 u_int segment;
943 entry_t *entry;
944 ike_sa_t *ike_sa = NULL;
945 ike_sa_id_t *id = message->get_ike_sa_id(message);
946
947 id = id->clone(id);
948 id->switch_initiator(id);
949
950 DBG2(DBG_MGR, "checkout IKE_SA by message");
951
952 if (message->get_request(message) &&
953 message->get_exchange_type(message) == IKE_SA_INIT)
954 {
955 /* IKE_SA_INIT request. Check for an IKE_SA with such a message hash. */
956 chunk_t data, hash;
957
958 data = message->get_packet_data(message);
959 this->hasher->allocate_hash(this->hasher, data, &hash);
960 chunk_free(&data);
961
962 if (get_entry_by_hash(this, id, hash, &entry, &segment) == SUCCESS)
963 {
964 if (entry->message_id == 0)
965 {
966 unlock_single_segment(this, segment);
967 chunk_free(&hash);
968 id->destroy(id);
969 DBG1(DBG_MGR, "ignoring IKE_SA_INIT, already processing");
970 return NULL;
971 }
972 else if (wait_for_entry(this, entry, segment))
973 {
974 DBG2(DBG_MGR, "IKE_SA checked out by hash");
975 entry->checked_out = TRUE;
976 entry->message_id = message->get_message_id(message);
977 ike_sa = entry->ike_sa;
978 }
979 unlock_single_segment(this, segment);
980 }
981
982 if (ike_sa == NULL)
983 {
984 if (id->get_responder_spi(id) == 0 &&
985 message->get_exchange_type(message) == IKE_SA_INIT)
986 {
987 /* no IKE_SA found, create a new one */
988 id->set_responder_spi(id, get_next_spi(this));
989 entry = entry_create();
990 entry->ike_sa = ike_sa_create(id);
991 entry->ike_sa_id = id->clone(id);
992
993 segment = put_entry(this, entry);
994 entry->checked_out = TRUE;
995 unlock_single_segment(this, segment);
996
997 entry->message_id = message->get_message_id(message);
998 entry->init_hash = hash;
999 ike_sa = entry->ike_sa;
1000
1001 DBG2(DBG_MGR, "created IKE_SA");
1002 }
1003 else
1004 {
1005 chunk_free(&hash);
1006 DBG1(DBG_MGR, "ignoring message, no such IKE_SA");
1007 }
1008 }
1009 else
1010 {
1011 chunk_free(&hash);
1012 }
1013 id->destroy(id);
1014 charon->bus->set_sa(charon->bus, ike_sa);
1015 return ike_sa;
1016 }
1017
1018 if (get_entry_by_id(this, id, &entry, &segment) == SUCCESS)
1019 {
1020 /* only check out if we are not processing this request */
1021 if (message->get_request(message) &&
1022 message->get_message_id(message) == entry->message_id)
1023 {
1024 DBG1(DBG_MGR, "ignoring request with ID %d, already processing",
1025 entry->message_id);
1026 }
1027 else if (wait_for_entry(this, entry, segment))
1028 {
1029 ike_sa_id_t *ike_id = entry->ike_sa->get_id(entry->ike_sa);
1030 DBG2(DBG_MGR, "IKE_SA successfully checked out");
1031 entry->checked_out = TRUE;
1032 entry->message_id = message->get_message_id(message);
1033 if (ike_id->get_responder_spi(ike_id) == 0)
1034 {
1035 ike_id->set_responder_spi(ike_id, id->get_responder_spi(id));
1036 }
1037 ike_sa = entry->ike_sa;
1038 }
1039 unlock_single_segment(this, segment);
1040 }
1041 id->destroy(id);
1042 charon->bus->set_sa(charon->bus, ike_sa);
1043 return ike_sa;
1044 }
1045
1046 /**
1047 * Implementation of of ike_sa_manager.checkout_by_config.
1048 */
1049 static ike_sa_t* checkout_by_config(private_ike_sa_manager_t *this,
1050 peer_cfg_t *peer_cfg)
1051 {
1052 enumerator_t *enumerator;
1053 entry_t *entry;
1054 ike_sa_t *ike_sa = NULL;
1055 peer_cfg_t *current_cfg;
1056 u_int segment;
1057
1058 if (!this->reuse_ikesa)
1059 { /* IKE_SA reuse disable by config */
1060 ike_sa = checkout_new(this, TRUE);
1061 charon->bus->set_sa(charon->bus, ike_sa);
1062 return ike_sa;
1063 }
1064
1065 enumerator = create_table_enumerator(this);
1066 while (enumerator->enumerate(enumerator, &entry, &segment))
1067 {
1068 if (!wait_for_entry(this, entry, segment))
1069 {
1070 continue;
1071 }
1072 if (entry->ike_sa->get_state(entry->ike_sa) == IKE_DELETING)
1073 { /* skip IKE_SAs which are not usable */
1074 continue;
1075 }
1076
1077 current_cfg = entry->ike_sa->get_peer_cfg(entry->ike_sa);
1078 if (current_cfg && current_cfg->equals(current_cfg, peer_cfg))
1079 {
1080 DBG2(DBG_MGR, "found an existing IKE_SA with a '%s' config",
1081 current_cfg->get_name(current_cfg));
1082 entry->checked_out = TRUE;
1083 ike_sa = entry->ike_sa;
1084 break;
1085 }
1086 }
1087 enumerator->destroy(enumerator);
1088
1089 if (!ike_sa)
1090 { /* no IKE_SA using such a config, hand out a new */
1091 ike_sa = checkout_new(this, TRUE);
1092 }
1093 charon->bus->set_sa(charon->bus, ike_sa);
1094 return ike_sa;
1095 }
1096
1097 /**
1098 * Implementation of of ike_sa_manager.checkout_by_id.
1099 */
1100 static ike_sa_t* checkout_by_id(private_ike_sa_manager_t *this, u_int32_t id,
1101 bool child)
1102 {
1103 enumerator_t *enumerator;
1104 iterator_t *children;
1105 entry_t *entry;
1106 ike_sa_t *ike_sa = NULL;
1107 child_sa_t *child_sa;
1108 u_int segment;
1109
1110 enumerator = create_table_enumerator(this);
1111 while (enumerator->enumerate(enumerator, &entry, &segment))
1112 {
1113 if (wait_for_entry(this, entry, segment))
1114 {
1115 /* look for a child with such a reqid ... */
1116 if (child)
1117 {
1118 children = entry->ike_sa->create_child_sa_iterator(entry->ike_sa);
1119 while (children->iterate(children, (void**)&child_sa))
1120 {
1121 if (child_sa->get_reqid(child_sa) == id)
1122 {
1123 ike_sa = entry->ike_sa;
1124 break;
1125 }
1126 }
1127 children->destroy(children);
1128 }
1129 else /* ... or for a IKE_SA with such a unique id */
1130 {
1131 if (entry->ike_sa->get_unique_id(entry->ike_sa) == id)
1132 {
1133 ike_sa = entry->ike_sa;
1134 }
1135 }
1136 /* got one, return */
1137 if (ike_sa)
1138 {
1139 entry->checked_out = TRUE;
1140 break;
1141 }
1142 }
1143 }
1144 enumerator->destroy(enumerator);
1145
1146 charon->bus->set_sa(charon->bus, ike_sa);
1147 return ike_sa;
1148 }
1149
1150 /**
1151 * Implementation of of ike_sa_manager.checkout_by_name.
1152 */
1153 static ike_sa_t* checkout_by_name(private_ike_sa_manager_t *this, char *name,
1154 bool child)
1155 {
1156 enumerator_t *enumerator;
1157 iterator_t *children;
1158 entry_t *entry;
1159 ike_sa_t *ike_sa = NULL;
1160 child_sa_t *child_sa;
1161 u_int segment;
1162
1163 enumerator = create_table_enumerator(this);
1164 while (enumerator->enumerate(enumerator, &entry, &segment))
1165 {
1166 if (wait_for_entry(this, entry, segment))
1167 {
1168 /* look for a child with such a policy name ... */
1169 if (child)
1170 {
1171 children = entry->ike_sa->create_child_sa_iterator(entry->ike_sa);
1172 while (children->iterate(children, (void**)&child_sa))
1173 {
1174 if (streq(child_sa->get_name(child_sa), name))
1175 {
1176 ike_sa = entry->ike_sa;
1177 break;
1178 }
1179 }
1180 children->destroy(children);
1181 }
1182 else /* ... or for a IKE_SA with such a connection name */
1183 {
1184 if (streq(entry->ike_sa->get_name(entry->ike_sa), name))
1185 {
1186 ike_sa = entry->ike_sa;
1187 }
1188 }
1189 /* got one, return */
1190 if (ike_sa)
1191 {
1192 entry->checked_out = TRUE;
1193 break;
1194 }
1195 }
1196 }
1197 enumerator->destroy(enumerator);
1198
1199 charon->bus->set_sa(charon->bus, ike_sa);
1200 return ike_sa;
1201 }
1202
1203 /**
1204 * enumerator filter function
1205 */
1206 static bool enumerator_filter(private_ike_sa_manager_t *this,
1207 entry_t **in, ike_sa_t **out, u_int *segment)
1208 {
1209 if (wait_for_entry(this, *in, *segment))
1210 {
1211 *out = (*in)->ike_sa;
1212 return TRUE;
1213 }
1214 return FALSE;
1215 }
1216
1217 /**
1218 * Implementation of ike_sa_manager_t.create_enumerator.
1219 */
1220 static enumerator_t *create_enumerator(private_ike_sa_manager_t* this)
1221 {
1222 return enumerator_create_filter(
1223 create_table_enumerator(this),
1224 (void*)enumerator_filter, this, NULL);
1225 }
1226
1227 /**
1228 * Implementation of ike_sa_manager_t.checkin.
1229 */
1230 static void checkin(private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
1231 {
1232 /* to check the SA back in, we look for the pointer of the ike_sa
1233 * in all entries.
1234 * The lookup is done by initiator SPI, so even if the SPI has changed (e.g.
1235 * on reception of a IKE_SA_INIT response) the lookup will work but
1236 * updating of the SPI MAY be necessary...
1237 */
1238 entry_t *entry;
1239 ike_sa_id_t *ike_sa_id;
1240 host_t *other;
1241 identification_t *my_id, *other_id;
1242 u_int segment;
1243
1244 ike_sa_id = ike_sa->get_id(ike_sa);
1245 my_id = ike_sa->get_my_id(ike_sa);
1246 other_id = ike_sa->get_other_id(ike_sa);
1247 other = ike_sa->get_other_host(ike_sa);
1248
1249 DBG2(DBG_MGR, "checkin IKE_SA");
1250
1251 /* look for the entry */
1252 if (get_entry_by_sa(this, ike_sa_id, ike_sa, &entry, &segment) == SUCCESS)
1253 {
1254 /* ike_sa_id must be updated */
1255 entry->ike_sa_id->replace_values(entry->ike_sa_id, ike_sa->get_id(ike_sa));
1256 /* signal waiting threads */
1257 entry->checked_out = FALSE;
1258 entry->message_id = -1;
1259 /* check if this SA is half-open */
1260 if (entry->half_open && ike_sa->get_state(ike_sa) != IKE_CONNECTING)
1261 {
1262 /* not half open anymore */
1263 entry->half_open = FALSE;
1264 remove_half_open(this, entry);
1265 }
1266 else if (entry->half_open && !other->ip_equals(other, entry->other))
1267 {
1268 /* the other host's IP has changed, we must update the hash table */
1269 remove_half_open(this, entry);
1270 DESTROY_IF(entry->other);
1271 entry->other = other->clone(other);
1272 put_half_open(this, entry);
1273 }
1274 else if (!entry->half_open &&
1275 !entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
1276 ike_sa->get_state(ike_sa) == IKE_CONNECTING)
1277 {
1278 /* this is a new half-open SA */
1279 entry->half_open = TRUE;
1280 entry->other = other->clone(other);
1281 put_half_open(this, entry);
1282 }
1283 DBG2(DBG_MGR, "check-in of IKE_SA successful.");
1284 entry->condvar->signal(entry->condvar);
1285 }
1286 else
1287 {
1288 entry = entry_create();
1289 entry->ike_sa_id = ike_sa_id->clone(ike_sa_id);
1290 entry->ike_sa = ike_sa;
1291 segment = put_entry(this, entry);
1292 }
1293
1294 /* apply identities for duplicate test (only as responder) */
1295 if (!entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
1296 ike_sa->get_state(ike_sa) == IKE_ESTABLISHED &&
1297 entry->my_id == NULL && entry->other_id == NULL)
1298 {
1299 entry->my_id = my_id->clone(my_id);
1300 entry->other_id = other_id->clone(other_id);
1301 put_connected_peers(this, entry);
1302 }
1303
1304 unlock_single_segment(this, segment);
1305
1306 charon->bus->set_sa(charon->bus, NULL);
1307 }
1308
1309 /**
1310 * Implementation of ike_sa_manager_t.checkin_and_destroy.
1311 */
1312 static void checkin_and_destroy(private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
1313 {
1314 /* deletion is a bit complex, we must ensure that no thread is waiting for
1315 * this SA.
1316 * We take this SA from the table, and start signaling while threads
1317 * are in the condvar.
1318 */
1319 entry_t *entry;
1320 ike_sa_id_t *ike_sa_id;
1321 u_int segment;
1322
1323 ike_sa_id = ike_sa->get_id(ike_sa);
1324
1325 DBG2(DBG_MGR, "checkin and destroy IKE_SA");
1326
1327 if (get_entry_by_sa(this, ike_sa_id, ike_sa, &entry, &segment) == SUCCESS)
1328 {
1329 /* drive out waiting threads, as we are in hurry */
1330 entry->driveout_waiting_threads = TRUE;
1331 /* mark it, so no new threads can get this entry */
1332 entry->driveout_new_threads = TRUE;
1333 /* wait until all workers have done their work */
1334 while (entry->waiting_threads)
1335 {
1336 /* wake up all */
1337 entry->condvar->broadcast(entry->condvar);
1338 /* they will wake us again when their work is done */
1339 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
1340 }
1341 remove_entry(this, entry);
1342 unlock_single_segment(this, segment);
1343
1344 if (entry->half_open)
1345 {
1346 remove_half_open(this, entry);
1347 }
1348 if (!entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
1349 entry->my_id && entry->other_id)
1350 {
1351 remove_connected_peers(this, entry);
1352 }
1353
1354 entry_destroy(entry);
1355
1356 DBG2(DBG_MGR, "check-in and destroy of IKE_SA successful");
1357 }
1358 else
1359 {
1360 DBG1(DBG_MGR, "tried to check-in and delete nonexisting IKE_SA");
1361 ike_sa->destroy(ike_sa);
1362 }
1363 charon->bus->set_sa(charon->bus, NULL);
1364 }
1365
1366
1367 /**
1368 * Implementation of ike_sa_manager_t.check_uniqueness.
1369 */
1370 static bool check_uniqueness(private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
1371 {
1372 bool cancel = FALSE;
1373 peer_cfg_t *peer_cfg;
1374 unique_policy_t policy;
1375 linked_list_t *list, *duplicate_ids = NULL;
1376 enumerator_t *enumerator;
1377 ike_sa_id_t *duplicate_id = NULL;
1378 identification_t *me, *other;
1379 u_int row, segment;
1380 rwlock_t *lock;
1381
1382 peer_cfg = ike_sa->get_peer_cfg(ike_sa);
1383 policy = peer_cfg->get_unique_policy(peer_cfg);
1384 if (policy == UNIQUE_NO)
1385 {
1386 return FALSE;
1387 }
1388
1389 me = ike_sa->get_my_id(ike_sa);
1390 other = ike_sa->get_other_id(ike_sa);
1391
1392 row = chunk_hash_inc(other->get_encoding(other),
1393 chunk_hash(me->get_encoding(me))) & this->table_mask;
1394 segment = row & this->segment_mask;
1395
1396 lock = this->connected_peers_segments[segment & this->segment_mask].lock;
1397 lock->read_lock(lock);
1398 if ((list = this->connected_peers_table[row]) != NULL)
1399 {
1400 connected_peers_t *current;
1401
1402 if (list->find_first(list, (linked_list_match_t)connected_peers_match,
1403 (void**)&current, me, other) == SUCCESS)
1404 {
1405 /* clone the list, so we can release the lock */
1406 duplicate_ids = current->sas->clone_offset(current->sas,
1407 offsetof(ike_sa_id_t, clone));
1408 }
1409 }
1410 lock->unlock(lock);
1411
1412 if (!duplicate_ids)
1413 {
1414 return FALSE;
1415 }
1416
1417 enumerator = duplicate_ids->create_enumerator(duplicate_ids);
1418 while (enumerator->enumerate(enumerator, &duplicate_id))
1419 {
1420 status_t status = SUCCESS;
1421 ike_sa_t *duplicate;
1422
1423 duplicate = checkout(this, duplicate_id);
1424 if (!duplicate)
1425 {
1426 continue;
1427 }
1428 peer_cfg = duplicate->get_peer_cfg(duplicate);
1429 if (peer_cfg && peer_cfg->equals(peer_cfg, ike_sa->get_peer_cfg(ike_sa)))
1430 {
1431 switch (duplicate->get_state(duplicate))
1432 {
1433 case IKE_ESTABLISHED:
1434 case IKE_REKEYING:
1435 switch (policy)
1436 {
1437 case UNIQUE_REPLACE:
1438 DBG1(DBG_IKE, "deleting duplicate IKE_SA for peer "
1439 "'%D' due to uniqueness policy", other);
1440 status = duplicate->delete(duplicate);
1441 break;
1442 case UNIQUE_KEEP:
1443 cancel = TRUE;
1444 /* we keep the first IKE_SA and delete all
1445 * other duplicates that might exist */
1446 policy = UNIQUE_REPLACE;
1447 break;
1448 default:
1449 break;
1450 }
1451 break;
1452 default:
1453 break;
1454 }
1455 }
1456 if (status == DESTROY_ME)
1457 {
1458 checkin_and_destroy(this, duplicate);
1459 }
1460 else
1461 {
1462 checkin(this, duplicate);
1463 }
1464 }
1465 enumerator->destroy(enumerator);
1466 duplicate_ids->destroy_offset(duplicate_ids, offsetof(ike_sa_id_t, destroy));
1467 /* reset thread's current IKE_SA after checkin */
1468 charon->bus->set_sa(charon->bus, ike_sa);
1469 return cancel;
1470 }
1471
1472 /**
1473 * Implementation of ike_sa_manager_t.get_half_open_count.
1474 */
1475 static int get_half_open_count(private_ike_sa_manager_t *this, host_t *ip)
1476 {
1477 int count = 0;
1478
1479 if (ip)
1480 {
1481 linked_list_t *list;
1482 chunk_t addr = ip->get_address(ip);
1483 u_int row = chunk_hash(addr) & this->table_mask;
1484 u_int segment = row & this->segment_mask;
1485
1486 rwlock_t *lock = this->half_open_segments[segment & this->segment_mask].lock;
1487 lock->read_lock(lock);
1488 if ((list = this->half_open_table[row]) != NULL)
1489 {
1490 half_open_t *current;
1491
1492 if (list->find_first(list, (linked_list_match_t)half_open_match,
1493 (void**)&current, &addr) == SUCCESS)
1494 {
1495 count = current->count;
1496 }
1497 }
1498 lock->unlock(lock);
1499 }
1500 else
1501 {
1502 u_int segment;
1503
1504 for (segment = 0; segment < this->segment_count; ++segment)
1505 {
1506 rwlock_t *lock;
1507 lock = this->half_open_segments[segment & this->segment_mask].lock;
1508 lock->read_lock(lock);
1509 count += this->half_open_segments[segment].count;
1510 lock->unlock(lock);
1511 }
1512 }
1513
1514 return count;
1515 }
1516
1517 /**
1518 * Implementation of ike_sa_manager_t.flush.
1519 */
1520 static void flush(private_ike_sa_manager_t *this)
1521 {
1522 /* destroy all list entries */
1523 enumerator_t *enumerator;
1524 entry_t *entry;
1525 u_int segment;
1526
1527 lock_all_segments(this);
1528 DBG2(DBG_MGR, "going to destroy IKE_SA manager and all managed IKE_SA's");
1529 /* Step 1: drive out all waiting threads */
1530 DBG2(DBG_MGR, "set driveout flags for all stored IKE_SA's");
1531 enumerator = create_table_enumerator(this);
1532 while (enumerator->enumerate(enumerator, &entry, &segment))
1533 {
1534 /* do not accept new threads, drive out waiting threads */
1535 entry->driveout_new_threads = TRUE;
1536 entry->driveout_waiting_threads = TRUE;
1537 }
1538 enumerator->destroy(enumerator);
1539 DBG2(DBG_MGR, "wait for all threads to leave IKE_SA's");
1540 /* Step 2: wait until all are gone */
1541 enumerator = create_table_enumerator(this);
1542 while (enumerator->enumerate(enumerator, &entry, &segment))
1543 {
1544 while (entry->waiting_threads || entry->checked_out)
1545 {
1546 /* wake up all */
1547 entry->condvar->broadcast(entry->condvar);
1548 /* go sleeping until they are gone */
1549 entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
1550 }
1551 }
1552 enumerator->destroy(enumerator);
1553 DBG2(DBG_MGR, "delete all IKE_SA's");
1554 /* Step 3: initiate deletion of all IKE_SAs */
1555 enumerator = create_table_enumerator(this);
1556 while (enumerator->enumerate(enumerator, &entry, &segment))
1557 {
1558 charon->bus->set_sa(charon->bus, entry->ike_sa);
1559 entry->ike_sa->delete(entry->ike_sa);
1560 }
1561 enumerator->destroy(enumerator);
1562
1563 DBG2(DBG_MGR, "destroy all entries");
1564 /* Step 4: destroy all entries */
1565 enumerator = create_table_enumerator(this);
1566 while (enumerator->enumerate(enumerator, &entry, &segment))
1567 {
1568 charon->bus->set_sa(charon->bus, entry->ike_sa);
1569 if (entry->half_open)
1570 {
1571 remove_half_open(this, entry);
1572 }
1573 if (!entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
1574 entry->my_id && entry->other_id)
1575 {
1576 remove_connected_peers(this, entry);
1577 }
1578 remove_entry_at((private_enumerator_t*)enumerator);
1579 entry_destroy(entry);
1580 }
1581 enumerator->destroy(enumerator);
1582 charon->bus->set_sa(charon->bus, NULL);
1583 unlock_all_segments(this);
1584 }
1585
1586 /**
1587 * Implementation of ike_sa_manager_t.destroy.
1588 */
1589 static void destroy(private_ike_sa_manager_t *this)
1590 {
1591 u_int i;
1592
1593 for (i = 0; i < this->table_size; ++i)
1594 {
1595 linked_list_t *list;
1596
1597 if ((list = this->ike_sa_table[i]) != NULL)
1598 {
1599 list->destroy(list);
1600 }
1601 if ((list = this->half_open_table[i]) != NULL)
1602 {
1603 list->destroy(list);
1604 }
1605 if ((list = this->connected_peers_table[i]) != NULL)
1606 {
1607 list->destroy(list);
1608 }
1609 }
1610 free(this->ike_sa_table);
1611 free(this->half_open_table);
1612 free(this->connected_peers_table);
1613 for (i = 0; i < this->segment_count; ++i)
1614 {
1615 this->segments[i].mutex->destroy(this->segments[i].mutex);
1616 this->half_open_segments[i].lock->destroy(this->half_open_segments[i].lock);
1617 this->connected_peers_segments[i].lock->destroy(this->connected_peers_segments[i].lock);
1618 }
1619 free(this->segments);
1620 free(this->half_open_segments);
1621 free(this->connected_peers_segments);
1622
1623 this->rng->destroy(this->rng);
1624 this->hasher->destroy(this->hasher);
1625 free(this);
1626 }
1627
1628 /**
1629 * This function returns the next-highest power of two for the given number.
1630 * The algorithm works by setting all bits on the right-hand side of the most
1631 * significant 1 to 1 and then increments the whole number so it rolls over
1632 * to the nearest power of two. Note: returns 0 for n == 0
1633 */
1634 static u_int get_nearest_powerof2(u_int n)
1635 {
1636 u_int i;
1637
1638 --n;
1639 for (i = 1; i < sizeof(u_int) * 8; i <<= 1)
1640 {
1641 n |= n >> i;
1642 }
1643 return ++n;
1644 }
1645
1646 /*
1647 * Described in header.
1648 */
1649 ike_sa_manager_t *ike_sa_manager_create()
1650 {
1651 u_int i;
1652 private_ike_sa_manager_t *this = malloc_thing(private_ike_sa_manager_t);
1653
1654 /* assign public functions */
1655 this->public.flush = (void(*)(ike_sa_manager_t*))flush;
1656 this->public.destroy = (void(*)(ike_sa_manager_t*))destroy;
1657 this->public.checkout = (ike_sa_t*(*)(ike_sa_manager_t*, ike_sa_id_t*))checkout;
1658 this->public.checkout_new = (ike_sa_t*(*)(ike_sa_manager_t*,bool))checkout_new;
1659 this->public.checkout_by_message = (ike_sa_t*(*)(ike_sa_manager_t*,message_t*))checkout_by_message;
1660 this->public.checkout_by_config = (ike_sa_t*(*)(ike_sa_manager_t*,peer_cfg_t*))checkout_by_config;
1661 this->public.checkout_by_id = (ike_sa_t*(*)(ike_sa_manager_t*,u_int32_t,bool))checkout_by_id;
1662 this->public.checkout_by_name = (ike_sa_t*(*)(ike_sa_manager_t*,char*,bool))checkout_by_name;
1663 this->public.check_uniqueness = (bool(*)(ike_sa_manager_t*, ike_sa_t *ike_sa))check_uniqueness;
1664 this->public.create_enumerator = (enumerator_t*(*)(ike_sa_manager_t*))create_enumerator;
1665 this->public.checkin = (void(*)(ike_sa_manager_t*,ike_sa_t*))checkin;
1666 this->public.checkin_and_destroy = (void(*)(ike_sa_manager_t*,ike_sa_t*))checkin_and_destroy;
1667 this->public.get_half_open_count = (int(*)(ike_sa_manager_t*,host_t*))get_half_open_count;
1668
1669 /* initialize private variables */
1670 this->hasher = lib->crypto->create_hasher(lib->crypto, HASH_PREFERRED);
1671 if (this->hasher == NULL)
1672 {
1673 DBG1(DBG_MGR, "manager initialization failed, no hasher supported");
1674 free(this);
1675 return NULL;
1676 }
1677 this->rng = lib->crypto->create_rng(lib->crypto, RNG_WEAK);
1678 if (this->rng == NULL)
1679 {
1680 DBG1(DBG_MGR, "manager initialization failed, no RNG supported");
1681 this->hasher->destroy(this->hasher);
1682 free(this);
1683 return NULL;
1684 }
1685 this->table_size = get_nearest_powerof2(lib->settings->get_int(lib->settings,
1686 "charon.ikesa_table_size", DEFAULT_HASHTABLE_SIZE));
1687 this->table_size = max(1, min(this->table_size, MAX_HASHTABLE_SIZE));
1688 this->table_mask = this->table_size - 1;
1689
1690 this->segment_count = get_nearest_powerof2(lib->settings->get_int(lib->settings,
1691 "charon.ikesa_table_segments", DEFAULT_SEGMENT_COUNT));
1692 this->segment_count = max(1, min(this->segment_count, this->table_size));
1693 this->segment_mask = this->segment_count - 1;
1694
1695 this->ike_sa_table = calloc(this->table_size, sizeof(linked_list_t*));
1696
1697 this->segments = (segment_t*)calloc(this->segment_count, sizeof(segment_t));
1698 for (i = 0; i < this->segment_count; ++i)
1699 {
1700 this->segments[i].mutex = mutex_create(MUTEX_RECURSIVE);
1701 this->segments[i].count = 0;
1702 }
1703
1704 /* we use the same table parameters for the table to track half-open SAs */
1705 this->half_open_table = calloc(this->table_size, sizeof(linked_list_t*));
1706 this->half_open_segments = calloc(this->segment_count, sizeof(shareable_segment_t));
1707 for (i = 0; i < this->segment_count; ++i)
1708 {
1709 this->half_open_segments[i].lock = rwlock_create(RWLOCK_DEFAULT);
1710 this->half_open_segments[i].count = 0;
1711 }
1712
1713 /* also for the hash table used for duplicate tests */
1714 this->connected_peers_table = calloc(this->table_size, sizeof(linked_list_t*));
1715 this->connected_peers_segments = calloc(this->segment_count, sizeof(shareable_segment_t));
1716 for (i = 0; i < this->segment_count; ++i)
1717 {
1718 this->connected_peers_segments[i].lock = rwlock_create(RWLOCK_DEFAULT);
1719 this->connected_peers_segments[i].count = 0;
1720 }
1721
1722 this->reuse_ikesa = lib->settings->get_bool(lib->settings,
1723 "charon.reuse_ikesa", TRUE);
1724 return &this->public;
1725 }